Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red

Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS

PDF(491 KB)
PDF(491 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 250-261. DOI: 10.1007/s11706-017-0389-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red

Author information +
History +

Abstract

This study describes the development of mesostructured TiO2 photocatalysts modified with PO43− to improve its specific surface area and reduce the recombination rate of the electron‒hole pairs. The mesoporous photocatalyst was successfully incorporated into a high specific surface area silica matrix by the hydrolysis reaction of tetraethyl orthosilicate (TEOS). Pluronic 123 and phosphoric acid were used as the directing agent for the structure of the mesoporous TiO2 and as a source of phosphorus, respectively. TiO2, P/TiO2, TiO2‒SiO2 and P/TiO2‒SiO2 materials were characterized by BET, XRD, TEM-EDS, FTIR and UV-vis DRS measurements. The photoactivity of TiO2‒SiO2 nanocomposites containing 15 wt.% photocatalyst/silica was evaluated in the degradation reaction of anionic dyes with UV radiation. The proposed nanomaterials showed high potential for applications in the remediation of wastewater, being able to reuse in several cycles of reaction, maintaining its photoactivity and stability. The separation and recovery time of the material is reduced between cycles since no centrifugation or filtration processes are required after the photooxidation reaction.

Keywords

photocatalysis / phosphated TiO2 / TiO2‒SiO2 / Congo red dye

Cite this article

Download citation ▾
Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red. Front. Mater. Sci., 2017, 11(3): 250‒261 https://doi.org/10.1007/s11706-017-0389-5

References

[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef Pubmed Google scholar
[2]
Han F, Kambala V S R, Srinivasan M, . Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 2009, 359(1–2): 25–40
CrossRef Google scholar
[3]
Reddy K M, Manorama S V, Reddy A R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78(1): 239–245
CrossRef Google scholar
[4]
Mo S D, Ching W Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B: Condensed Matter and Materials Physics, 1995, 51(19): 13023–13032
CrossRef Pubmed Google scholar
[5]
Pekakis P A, Xekoukoulotakis N P, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 2006, 40(6): 1276–1286
CrossRef Pubmed Google scholar
[6]
Almquist C B, Biswas P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis, 2002, 212(2): 145–156
CrossRef Google scholar
[7]
Yoshitake H, Sugihara T, Tatsumi T. Preparation of Wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chemistry of Materials, 2002, 14(3): 1023–1029
CrossRef Google scholar
[8]
Soler-Illia G J D A, Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic–inorganic composites. New Journal of Chemistry, 2000, 24(7): 493–499
CrossRef Google scholar
[9]
Soler-Illia G J D A, Scolan E, Louis A, . Design of meso-structured titanium oxo based hybrid organic–inorganic networks. New Journal of Chemistry, 2001, 25(1): 156–165
CrossRef Google scholar
[10]
Calleja G, Serrano D P, Sanz R, . Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Industrial & Engineering Chemistry Research, 2004, 43(10): 2485–2492
CrossRef Google scholar
[11]
Calleja G, Serrano D P, Sanz R, . Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol–gel route. Microporous and Mesoporous Materials, 2008, 111(1–3): 429–440
CrossRef Google scholar
[12]
Wang W, Lu C, Ni Y, . Enhanced performance of {001} facets dominated mesoporous TiO2 photocatalyst composed of high-reactive nanocrystals and mesoporous spheres. Applied Surface Science, 2013, 265: 438–442
CrossRef Google scholar
[13]
Zhao Z, Sun Z, Zhao H, . Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. Journal of Materials Chemistry, 2012, 22(41): 21965–21971
CrossRef Google scholar
[14]
Ismail A A, Bahnemann D W, Robben L, . Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chemistry of Materials, 2010, 22(1): 108–116
CrossRef Google scholar
[15]
Wang Z C, Shui H F. Effect of PO43– and PO43––SO42– modification of TiO2 on its photocatalytic properties. Journal of Molecular Catalysis A: Chemical, 2007, 263(1–2): 20–25
CrossRef Google scholar
[16]
Shi Q, Yang D, Jiang Z, . Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48
CrossRef Google scholar
[17]
Kőrösi L, Dékány I. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280(1–3): 146–154
CrossRef Google scholar
[18]
Lin L, Lin W, Xie J L, . Photocatalytic properties of phosphor-doped titania nanoparticles. Applied Catalysis B: Environmental, 2007, 75(1–2): 52–58
CrossRef Google scholar
[19]
Yu H F, Zhang Z W, Hu F C. Phase stabilities and photocatalytic activities of P/Zn–TiO2 nanoparticles able to operate under UV-vis light irradiation. Journal of Alloys and Compounds, 2008, 465(1–2): 484–490
CrossRef Google scholar
[20]
Li F, Jiang Y, Xia M, . Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C, 2009, 113(42): 18134–18141
CrossRef Google scholar
[21]
Shan A Y, Ghazi T I M, Rashid S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 2010, 389(1–2): 1–8
CrossRef Google scholar
[22]
Zhu B, Zou L. Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. Journal of Environmental Management, 2009, 90(11): 3217–3225
CrossRef Pubmed Google scholar
[23]
Jin L, Dai B. TiO2 activation using acid-treated vermiculite as a support: Characteristics and photoreactivity. Applied Surface Science, 2012, 258(8): 3386–3392
CrossRef Google scholar
[24]
Stathatos E, Papoulis D, Aggelopoulos C A, . TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. Journal of Hazardous Materials, 2012, 211–212: 68–76
CrossRef Pubmed Google scholar
[25]
Chen Y, Wang K, Lou L. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1–2): 281–287
CrossRef Google scholar
[26]
Li Y, Kim S J. Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. The Journal of Physical Chemistry B, 2005, 109(25): 12309–12315
CrossRef Pubmed Google scholar
[27]
Yu J C, Zhang L, Zheng Z, . Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials, 2003, 15(11): 2280–2286
CrossRef Google scholar
[28]
Monshi A, Foroughi M R, Monshi M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160
CrossRef Google scholar
[29]
Yu J C, Zhang L Z, Yu J G. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New Journal of Chemistry, 2002, 26(4): 416–420
CrossRef Google scholar
[30]
Thommes M, Kaneko K, Neimark A V, . Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069
[31]
Nadtochenko V, Denisov N, Gorenberg A, . Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Applied Catalysis B: Environmental, 2009, 91(1–2): 460–469
CrossRef Google scholar
[32]
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. physica status solidi, 1966, 15(2): 627–637
[33]
Yamashita H, Ichihashi Y, Harada M, . Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO2 powder catalysts. Journal of Catalysis, 1996, 158(1): 97–101
CrossRef Google scholar
[34]
Rahman I A, Vejayakumaran P, Sipaut C S, . Size-dependent physicochemical and optical properties of silica nanoparticles. Materials Chemistry and Physics, 2009, 114(1): 328–332
CrossRef Google scholar
[35]
Connor P A, McQuillan A J. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15(8): 2916–2921
CrossRef Google scholar
[36]
Pucher P, Benmami M, Azouani R, . Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General, 2007, 332(2): 297–303
CrossRef Google scholar
[37]
Lachheb H, Puzenat E, Houas A, . Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 2002, 39(1): 75–90
CrossRef Google scholar
[38]
Zhu H, Jiang R, Xiao L, . Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. Journal of Hazardous Materials, 2009, 169(1–3): 933–940
CrossRef Pubmed Google scholar
[39]
Wang J, Li R, Zhang Z, . Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation. Applied Catalysis A: General, 2008, 334(1–2): 227–233
CrossRef Google scholar
[40]
Ince N H, Tezcanlí G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and Pigments, 2001, 49(3): 145–153
CrossRef Google scholar
[41]
Iida Y, Kozuka T, Tuziuti T, . Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas. Ultrasonics, 2004, 42(1–9): 635–639
CrossRef Pubmed Google scholar

Acknowledgements

We thank the National Science and Technology Council of Mexico (CONACYT) for the Scholarship No. 313880. We are very grateful to Victor Hugo Lara and Patricia Castillo for their timely and professional technical assessment in several of the experimental techniques employed in this work.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(491 KB)

Accesses

Citations

Detail

Sections
Recommended

/