One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers

Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO

PDF(381 KB)
PDF(381 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 223-232. DOI: 10.1007/s11706-017-0388-6
RESEARCH ARTICLE
RESEARCH ARTICLE

One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers

Author information +
History +

Abstract

A novel β-cyclodextrin–poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-poly(ethylene glycol) methacrylate (abbreviated as: β-CD–(P(MEO2MA-co-PEGMA))21) was prepared by using the one-step strategy, and then the star-shaped copolymers were used in the atom transfer radical polymerization (ATRP). The structure of star-shaped β-CD–(P(MEO2MA-co-PEGMA))21 copolymers were studied by FTIR, 1H NMR and gel permeation chromatography (GPC). The star-shaped copolymers could self-assembled into micelles in aqueous solution owing to the outer amphiphilic β-CD as a core and the hydrophilic P(MEO2MA-co-PEGMA) segments as a shell. These thermo-responsive star-shaped copolymers micelles exhibited lower critical solution temperature (LCST) in water, which could be finely tuned by changing the feed ratio of MEO2MA to PEGMA. The LCST of star-shaped β-CD–(P(MEO2MA-co-PEGMA))21 copolymer micelles were increased from 35°C to 58°C with the increasing content of PEGMA. The results were investigated by DLS and TEM. When the temperature was higher than corresponding LCSTs, the micelles started to associate and form spherical nanoparticles. Therefore, β-CD–(P(MEO2MA-co-PEGMA))21 star-shaped copolymer micelles could be potentially applied in nano-carrier, nano-reactor, smart materials and biomedical fields.

Keywords

star-shaped copolymers / thermo-responsive / β-cyclodextrin (β-CD) / self-assembly / atom transfer radical polymerization (ATRP)

Cite this article

Download citation ▾
Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers. Front. Mater. Sci., 2017, 11(3): 223‒232 https://doi.org/10.1007/s11706-017-0388-6

References

[1]
Lapienis G. Star-shaped polymers having PEO arms. Progress in Polymer Science, 2009, 34(9): 852–892
CrossRef Google scholar
[2]
Aloorkar N H, Kulkarni  A S, Patil  R A, . Star polymers: an overview. International Journal of Pharmaceutical Sciences and Nanotechnology, 2012, 5(2): 1675–1684
[3]
Ramkissoon-Ganorkar C ,  Baudyš M ,  Kim S W . Effect of ionic strength on the loading efficiency of model polypeptide/protein drugs in pH-/temperature-sensitive polymers. Journal of Biomaterials Science: Polymer Edition, 2000, 11(1): 45–54
CrossRef Pubmed Google scholar
[4]
Zhao S P, Zhou  F, Li L Y . pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release  profiles.  Journal  of  Polymer  Research, 2012, 19(9): 9944
CrossRef Google scholar
[5]
Miladinovic Z R ,  Micic M ,  Suljovrujic E . Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. Journal of Polymer Research, 2016, 23(4): 77
[6]
Wang H, Yan  H, Zhu Y J , . Synthesis and characterization of thermo-responsive supramolecular diblock copolymers. Journal of Polymer Research, 2016, 23(4): 73–81
CrossRef Google scholar
[7]
Ward M A, Georgiou  T K. Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(4): 1215–1242
CrossRef Google scholar
[8]
Wang M, Gao  Y F, Cao  C X, . Binary solvent colloids of thermosensitive poly(N-isopropylacrylamide) microgel for smart windows. Industrial & Engineering Chemistry Research, 2014, 53(48): 18462–18472
CrossRef Google scholar
[9]
Mu C G, Fan  X D, Tian  W, . Miktoarm star polymers with poly(N-isopropylacrylamide) or poly(oligo(ethylene glycol) methacrylate) as building blocks: synthesis and comparison of thermally-responsive behaviors. Polymer Chemistry, 2012, 3(5): 1137–1149
CrossRef Google scholar
[10]
Li Y W, Guo  H L, Zhang  Y F, . Pseudo-graft polymer based on adamantyl-terminated poly(oligo(ethylene glycol) methacrylate) and homopolymer with cyclodextrin as pendant: its thermoresponsivity through polymeric self-assembly and host-guest inclusion complexation. RSC Advances, 2014, 4(34): 17768–17779
CrossRef Google scholar
[11]
Zhang Z X, Liu  K L, Li  J. Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules, 2011, 44(5): 1182–1193
CrossRef Google scholar
[12]
Mao J, Ji  X L, Bo  S Q. Synthesis and pH/temperature-responsive behavior of PLLA-b-PDMAEMA block polyelectrolytes prepared via ROP and ATRP. Macromolecular Chemistry and Physics, 2011, 212(7): 744–752
CrossRef Google scholar
[13]
Ma Z Y, Jia  X, Zhang G X , . pH-responsive controlled-release fertilizer  with  water  retention  via  atom  transfer  radical polymerization of acrylic acid on mussel-inspired initiator. Journal of Agricultural and Food Chemistry, 2013, 61(23): 5474–5482
CrossRef Pubmed Google scholar
[14]
Matyjaszewski K, Tsarevsky  N V. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 2014, 136(18): 6513–6533
CrossRef Pubmed Google scholar
[15]
Matyjaszewski K, Miller  P J, Pyun  J, . Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic–organic multifunctional initiators. Macromolecules, 1999, 32(20): 6526–6535
CrossRef Google scholar
[16]
Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 1998, 98(5): 1743–1754
CrossRef Pubmed Google scholar
[17]
Tian Z C, Chen  C, Allcock H R . Injectable and biodegradable supramolecular hydrogels by inclusion complexation between poly(organophosphazenes) and α-cyclodextrin. Macromolecules, 2013, 46(7): 2715–2724
CrossRef Google scholar
[18]
Dong H, Li  Y, Yu J , . A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications. Small, 2013, 9(3): 446–456
CrossRef Pubmed Google scholar
[19]
Davis M E, Brewster  M E. Cyclodextrin-based pharmaceutics: past, present and future. Nature Reviews Drug Discovery, 2004, 3(12): 1023–1035
CrossRef Pubmed Google scholar
[20]
Machín R, Isasi  J R, Vélaz  I. β-Cyclodextrin hydrogels as potential drug delivery systems. Carbohydrate Polymers, 2012, 87(3): 2024–2030
CrossRef Google scholar
[21]
Chen G, Jiang  M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews, 2011, 40(5): 2254–2266
CrossRef Pubmed Google scholar
[22]
Chen B Y, Pang  X H, Dong  C M. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Advanced Functional Materials, 2010, 20(4): 579–586
CrossRef Google scholar
[23]
Shao S Q, Si  J X, Tang  J B, . Jellyfish-shaped amphiphilic dendrimers: synthesis and formation of extremely uniform aggregates. Macromolecules, 2014, 47(3): 916–921
CrossRef Google scholar
[24]
Pang X C, Zhao  L, Akinc M , . Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules, 2011, 44(10): 3746–3752
CrossRef Google scholar
[25]
Pang X C, Zhao  L, Feng C W , . Novel amphiphilic multiarm, starlike coil-rod diblock copolymers via a combination of click chemistry with living polymerization. Macromolecules, 2011, 44(18): 7176–7183
CrossRef Google scholar
[26]
Zhang Q, Su  L, Collins J , . Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. Journal of the American Chemical Society, 2014, 136(11): 4325–4332
CrossRef Pubmed Google scholar
[27]
Lutz J F, Hoth  A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules, 2006, 39(2): 893–896
CrossRef Google scholar
[28]
Yuan W Z, Li  X F, Gu  S Y, . Amphiphilic chitosan graft copolymer via combination of ROP, ATRP and click chemistry: synthesis, self-assembly, thermosensitivity, fluorescence, and controlled drug release. Polymer, 2011, 52(3): 658–666
CrossRef Google scholar
[29]
Kotsuchibashi Y, Ebara  M, Hoffman A S , . Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polymer Chemistry, 2015, 6(10): 1693–1697
CrossRef Google scholar
[30]
Das S, Samanta  S, Chatterjee D P , . Thermosensitive water-soluble poly(ethylene glycol)-based polythiophene graft copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(6): 1417–1427
CrossRef Google scholar
[31]
Elias P Z, Liu  G W, Wei  H, . A functionalized, injectable hydrogel  for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. Journal of Controlled Release, 2015, 208: 76–84
CrossRef Pubmed Google scholar
[32]
Zhang Z X, Liu  X, Xu F J , . Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a β-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly. Macromolecules, 2008, 41(16): 5967–5970
CrossRef Google scholar
[33]
Medel S, Manuel García  J, Garrido L , . Thermo- and pH-responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(3): 690–700
CrossRef Google scholar
[34]
Rieger J, Grazon  C, Charleux B , . Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(9): 2373–2390
CrossRef Google scholar
[35]
Gil E S, Hudson  S M. Stimuli-responsive polymers and their bioconjugates. Progress in Polymer Science, 2004, 29(12): 1173–1222
CrossRef Google scholar
[36]
Hoffman A S, Stayton  P S. Bioconjugates of smart polymers and proteins: synthesis and applications. Macromolecular Symposia, 2004, 207(1): 139–152
CrossRef Google scholar
[37]
Badi N, Lutz  J F. PEG-based thermogels: applicability in physiological media. Journal of Controlled Release, 2009, 140(3): 224–229
CrossRef Pubmed Google scholar

Disclosure of potential conflicts of interests

The authors declare no competing financial interest.

Acknowledgements

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (Grant No. 51662036) and the Bingtuan Innovation Team in Key Areas (2015BD003).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(381 KB)

Accesses

Citations

Detail

Sections
Recommended

/