One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers

Lulu WEI , Beibei LU , Lei LI , Jianning WU , Zhiyong LIU , Xuhong GUO

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 223 -232.

PDF (381KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 223 -232. DOI: 10.1007/s11706-017-0388-6
RESEARCH ARTICLE
RESEARCH ARTICLE

One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers

Author information +
History +
PDF (381KB)

Abstract

A novel β-cyclodextrin–poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-poly(ethylene glycol) methacrylate (abbreviated as: β-CD–(P(MEO2MA-co-PEGMA))21) was prepared by using the one-step strategy, and then the star-shaped copolymers were used in the atom transfer radical polymerization (ATRP). The structure of star-shaped β-CD–(P(MEO2MA-co-PEGMA))21 copolymers were studied by FTIR, 1H NMR and gel permeation chromatography (GPC). The star-shaped copolymers could self-assembled into micelles in aqueous solution owing to the outer amphiphilic β-CD as a core and the hydrophilic P(MEO2MA-co-PEGMA) segments as a shell. These thermo-responsive star-shaped copolymers micelles exhibited lower critical solution temperature (LCST) in water, which could be finely tuned by changing the feed ratio of MEO2MA to PEGMA. The LCST of star-shaped β-CD–(P(MEO2MA-co-PEGMA))21 copolymer micelles were increased from 35°C to 58°C with the increasing content of PEGMA. The results were investigated by DLS and TEM. When the temperature was higher than corresponding LCSTs, the micelles started to associate and form spherical nanoparticles. Therefore, β-CD–(P(MEO2MA-co-PEGMA))21 star-shaped copolymer micelles could be potentially applied in nano-carrier, nano-reactor, smart materials and biomedical fields.

Keywords

star-shaped copolymers / thermo-responsive / β-cyclodextrin (β-CD) / self-assembly / atom transfer radical polymerization (ATRP)

Cite this article

Download citation ▾
Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers. Front. Mater. Sci., 2017, 11(3): 223-232 DOI:10.1007/s11706-017-0388-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lapienis G. Star-shaped polymers having PEO arms. Progress in Polymer Science200934(9): 852–892

[2]

Aloorkar N HKulkarni  A SPatil  R A. Star polymers: an overview. International Journal of Pharmaceutical Sciences and Nanotechnology20125(2): 1675–1684

[3]

Ramkissoon-Ganorkar C Baudyš M Kim S W . Effect of ionic strength on the loading efficiency of model polypeptide/protein drugs in pH-/temperature-sensitive polymers. Journal of Biomaterials Science: Polymer Edition200011(1): 45–54

[4]

Zhao S PZhou  FLi L Y . pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release  profiles.  Journal  of  Polymer  Research201219(9): 9944

[5]

Miladinovic Z R Micic M Suljovrujic E . Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. Journal of Polymer Research201623(4): 77

[6]

Wang HYan  HZhu Y J . Synthesis and characterization of thermo-responsive supramolecular diblock copolymers. Journal of Polymer Research201623(4): 73–81

[7]

Ward M AGeorgiou  T K. Thermoresponsive polymers for biomedical applications. Polymers20113(4): 1215–1242

[8]

Wang MGao  Y FCao  C X. Binary solvent colloids of thermosensitive poly(N-isopropylacrylamide) microgel for smart windows. Industrial & Engineering Chemistry Research201453(48): 18462–18472

[9]

Mu C GFan  X DTian  W. Miktoarm star polymers with poly(N-isopropylacrylamide) or poly(oligo(ethylene glycol) methacrylate) as building blocks: synthesis and comparison of thermally-responsive behaviors. Polymer Chemistry20123(5): 1137–1149

[10]

Li Y WGuo  H LZhang  Y F. Pseudo-graft polymer based on adamantyl-terminated poly(oligo(ethylene glycol) methacrylate) and homopolymer with cyclodextrin as pendant: its thermoresponsivity through polymeric self-assembly and host-guest inclusion complexation. RSC Advances20144(34): 17768–17779

[11]

Zhang Z XLiu  K LLi  J. Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules201144(5): 1182–1193

[12]

Mao JJi  X LBo  S Q. Synthesis and pH/temperature-responsive behavior of PLLA-b-PDMAEMA block polyelectrolytes prepared via ROP and ATRP. Macromolecular Chemistry and Physics2011212(7): 744–752

[13]

Ma Z YJia  XZhang G X . pH-responsive controlled-release fertilizer  with  water  retention  via  atom  transfer  radical polymerization of acrylic acid on mussel-inspired initiator. Journal of Agricultural and Food Chemistry201361(23): 5474–5482

[14]

Matyjaszewski KTsarevsky  N V. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society2014136(18): 6513–6533

[15]

Matyjaszewski KMiller  P JPyun  J. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic–organic multifunctional initiators. Macromolecules199932(20): 6526–6535

[16]

Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews199898(5): 1743–1754

[17]

Tian Z CChen  CAllcock H R . Injectable and biodegradable supramolecular hydrogels by inclusion complexation between poly(organophosphazenes) and α-cyclodextrin. Macromolecules201346(7): 2715–2724

[18]

Dong HLi  YYu J . A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications. Small20139(3): 446–456

[19]

Davis M EBrewster  M E. Cyclodextrin-based pharmaceutics: past, present and future. Nature Reviews Drug Discovery20043(12): 1023–1035

[20]

Machín RIsasi  J RVélaz  I. β-Cyclodextrin hydrogels as potential drug delivery systems. Carbohydrate Polymers201287(3): 2024–2030

[21]

Chen GJiang  M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews201140(5): 2254–2266

[22]

Chen B YPang  X HDong  C M. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Advanced Functional Materials201020(4): 579–586

[23]

Shao S QSi  J XTang  J B. Jellyfish-shaped amphiphilic dendrimers: synthesis and formation of extremely uniform aggregates. Macromolecules201447(3): 916–921

[24]

Pang X CZhao  LAkinc M . Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules201144(10): 3746–3752

[25]

Pang X CZhao  LFeng C W . Novel amphiphilic multiarm, starlike coil-rod diblock copolymers via a combination of click chemistry with living polymerization. Macromolecules201144(18): 7176–7183

[26]

Zhang QSu  LCollins J . Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. Journal of the American Chemical Society2014136(11): 4325–4332

[27]

Lutz J FHoth  A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules200639(2): 893–896

[28]

Yuan W ZLi  X FGu  S Y. Amphiphilic chitosan graft copolymer via combination of ROP, ATRP and click chemistry: synthesis, self-assembly, thermosensitivity, fluorescence, and controlled drug release. Polymer201152(3): 658–666

[29]

Kotsuchibashi YEbara  MHoffman A S . Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polymer Chemistry20156(10): 1693–1697

[30]

Das SSamanta  SChatterjee D P . Thermosensitive water-soluble poly(ethylene glycol)-based polythiophene graft copolymers. Journal of Polymer Science Part A: Polymer Chemistry201351(6): 1417–1427

[31]

Elias P ZLiu  G WWei  H. A functionalized, injectable hydrogel  for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. Journal of Controlled Release2015208: 76–84

[32]

Zhang Z XLiu  XXu F J . Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a β-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly. Macromolecules200841(16): 5967–5970

[33]

Medel SManuel García  JGarrido L . Thermo- and pH-responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces. Journal of Polymer Science Part A: Polymer Chemistry201149(3): 690–700

[34]

Rieger JGrazon  CCharleux B . Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. Journal of Polymer Science Part A: Polymer Chemistry200947(9): 2373–2390

[35]

Gil E SHudson  S M. Stimuli-responsive polymers and their bioconjugates. Progress in Polymer Science200429(12): 1173–1222

[36]

Hoffman A SStayton  P S. Bioconjugates of smart polymers and proteins: synthesis and applications. Macromolecular Symposia2004207(1): 139–152

[37]

Badi NLutz  J F. PEG-based thermogels: applicability in physiological media. Journal of Controlled Release2009140(3): 224–229

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (381KB)

1162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/