Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion

Feng LI, Yang LIU, Xu-Bo LI

PDF(670 KB)
PDF(670 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 296-305. DOI: 10.1007/s11706-017-0387-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion

Author information +
History +

Abstract

One of the important factors that affect the microstructure and properties of extruded products is recrystallization behavior. Alternate forward extrusion (AFE) is a new type of metal extrusion process with strong potential. In this paper, we carried out the AFE process experiments of as-cast AZ31 magnesium alloy and obtained extrusion bar whose microstructure and deformation mechanism were analyzed by means of optical microscopy, electron backscattered diffraction and transmission electron microscopy. The experimental results indicated that homogeneous fine-grained structure with mean grain size of 3.91 μm was obtained after AFE at 573 K. The dominant reason of grain refinement was considered the dynamic recrystallization (DRX) induced by strain localization and shear plastic deformation. In the 573–673 K range, the yield strength, tensile strength and elongation of the composite mechanical properties are reduced accordingly with the increase of the forming temperature. Shown as in relevant statistics, the proportion of the large-angle grain boundaries decreased significantly. The above results provide an important scientific basis of the scheme formulation and active control on microstructure and property for AZ31 magnesium alloy AFE process.

Keywords

magnesium alloy / alternate forward extrusion (AFE) / mechanical property / dynamic recrystallization

Cite this article

Download citation ▾
Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion. Front. Mater. Sci., 2017, 11(3): 296‒305 https://doi.org/10.1007/s11706-017-0387-7

References

[1]
Joost W J, Krajewski  P E. Towards magnesium alloys for high-volume automotive applications. Scripta Materialia, 2017, 128: 107–112
CrossRef Google scholar
[2]
Chen Q, Zhao  Z, Chen G , . Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy. Journal of Alloys and Compounds, 2015, 632: 190–200
CrossRef Google scholar
[3]
Zhao Z D, Chen  Q, Chao H Y , . Microstructural evolution and tensile mechanical properties of thixoforged ZK60-Y magnesium alloys produced by two different routes. Materials & Design, 2010, 31(4): 1906–1916
CrossRef Google scholar
[4]
Alizadeh R, Mahmudi  R, Ngan A H W , . Microstructure, texture, and superplasticity of a fine-grained Mg–Gd–Zr alloy processed by equal-channel angular pressing. Materials Science and Engineering A, 2016, 47(12): 6056–6069
[5]
Lin J B, Wang  X Y, Ren  W J, . Enhanced strength and ductility due to microstructure refinement and texture weakening of the GW102K alloy by cyclic extrusion compression. Journal of Materials Science and Technology, 2016, 32(8): 783–789
CrossRef Google scholar
[6]
Figueiredo R B ,  Langdon T G . Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A, 2011, 528(13–14): 4500–4506
CrossRef Google scholar
[7]
Fata A, Faraji  G, Mashhadi M M , . Hottensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation. Materials Science and Engineering A, 2016, 674: 9–17
CrossRef Google scholar
[8]
Wang Q, Chen  Y, Liu M , . Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression. Materials Science and Engineering A, 2010, 527(9): 2265–2273
CrossRef Google scholar
[9]
Kaseem M, Chung  B K, Yang  H W, . Effect of deformation temperature on microstructure and mechanical properties of AZ31 Mg alloy processed by differential-speed rolling. Journal of Materials Science and Technology, 2015, 31(5): 498–503
CrossRef Google scholar
[10]
Li F, Zeng  X, Cao G J . Investigation of microstructure characteristics of the CVCDEed AZ31 magnesium alloy. Materials Science and Engineering A, 2015, 639: 395–401
CrossRef Google scholar
[11]
Sepahi-Boroujeni S ,  Fereshteh-Saniee F . Expansion equal channel angular extrusion, as a novel severe plastic deformation technique. Journal of Materials Science, 2015, 50(11): 3908–3919
CrossRef Google scholar
[12]
Hu H J, Wang  H, Zhai Z Y , . The influences of shear deformation on the evolutions of the extrusion shear for magnesium alloy. International Journal of Advanced Manufacturing Technology, 2014, 74(1–4): 423–432
CrossRef Google scholar
[13]
Orlov D, Raab  G, Lamark T T , . Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011, 59(1): 375–385
CrossRef Google scholar
[14]
Orlov D, Ralston  K D, Birbilis  N, . Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011, 59(15): 6176–6186
CrossRef Google scholar
[15]
Shahbaz M, Pardis  N, Ebrahimi R , . A novel single pass severe plastic deformation technique: Vortex extrusion. Materials Science and Engineering A, 2011, 530(1): 469–472
CrossRef Google scholar
[16]
Yang X, Miura  H, Sakai T , . Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation. Materials Transactions, 2003, 44(1): 197–203
CrossRef Google scholar
[17]
Yang Q, Jiang  B, Tian Y , . A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets. Materials Letters, 2013, 100: 29–31
CrossRef Google scholar
[18]
Yang Q, Jiang  B, He J , . Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process. Materials Science and Engineering A, 2014, 612: 187–191
CrossRef Google scholar
[19]
Wang C P, Li  F G, Li  Q H, . Numerical and experimental studies of pure copper processed by a new severe plastic deformation method. Materials Science and Engineering A, 2012, 548(3): 19–26
[20]
Khoddam S, Farhoumand  A, Hodgson P D . Axi-symmetric forward spiral extrusion, a kinematic and experimental study. Materials Science and Engineering A, 2011, 528(3): 1023–1029
CrossRef Google scholar
[21]
Al-Samman T, Li  X, Chowdhury S G . Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy. Materials Science and Engineering A, 2010, 527(15): 3450–3463
CrossRef Google scholar

Acknowledgement

This project was supported by the National Natural Science Foundation of China (Grant No. 51675143).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(670 KB)

Accesses

Citations

Detail

Sections
Recommended

/