Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity

Cong ZHAO , Da-chuan ZHU , Xiao-yao CHENG , Shi-xiu CAO

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 241 -249.

PDF (420KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 241 -249. DOI: 10.1007/s11706-017-0386-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity

Author information +
History +
PDF (420KB)

Abstract

TiO2 is active only in the ultraviolet region. To enhance the active ability, a combined method consisting of the anodic oxidation method and the hydrothermal method was developed to prepare highly ordered Ag–TiO2 nanocomposited arrays. The anodic oxidation was used to synthesize amorphous nanotubes with high chemical activity that subsequently served as highly ordered templates in preparing the final sample. The amorphous nanotubes got converted to highly ordered Ag–TiO2 (anatase) arrays in the silver nitrate & glucose aqueous solution via hydrothermal treatment. SEM and TEM results show that the Ag–TiO2 nanocomposite was composed of a large number of Ag nanoparticles and anatase TiO2 nanoparticles, and the morphology of those at the top of the arrays was found different from that of its trunk. The morphology evolution mechanism of the obtained sample was discussed. It is also revealed that the Ag–TiO2 nanocomposite has high visible-light photocatalytic activity.

Keywords

TiO 2 / nanoparticles / silver / heterojunction

Cite this article

Download citation ▾
Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity. Front. Mater. Sci., 2017, 11(3): 241-249 DOI:10.1007/s11706-017-0386-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin HWada YKitamura T. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2Journal of Materials Chemistry200111(6): 1694–1703

[2]

Lapides A MAshford D LHanson K. Stabilization of a ruthenium(II) polypyridyl dye on nanocrystalline TiO2 by an electropolymerized overlayer. Journal of the American Chemical Society2013135(41): 15450–15458

[3]

Durupthy OBill JAldinger F. Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape. Crystal Growth & Design20077(12): 2696–2704

[4]

Nguyen C KCha H GKang Y S. Axis-oriented, anatase TiO2 single crystals with dominant 001 and 100 facets. Crystal Growth & Design201111(9): 3947–3953

[5]

Tong HOuyang SBi Y. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials201224(2): 229–251

[6]

Reyes-Coronado DRodríguez-Gattorno GEspinosa-Pesqueira M E. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology200819(14): 145605

[7]

Peng YHuang GHuang W. Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Advanced Powder Technology201223(1): 8–12

[8]

Waterhouse G I NWahab A KAl-Oufi M. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2Scientific Reports20133: 2849 (5 pages) doi:10.1038/srep02849

[9]

Kisch H. Semiconductor photocatalysis — mechanistic and synthetic aspects. Angewandte Chemie International Edition201352(3): 812–847

[10]

Chen XBurda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society2008130(15): 5018–5019

[11]

De Trizio LBuonsanti RSchimpf A M. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chemistry of Materials201325(16): 3383–3390

[12]

Sacco OVaiano VHan C. Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Applied Catalysis B: Environmental2015164: 462–474

[13]

Spadavecchia FCappelletti GArdizzone S. Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Applied Catalysis B: Environmental201096(3‒4): 314–322

[14]

Lee W JLee J MKochuveedu S T. Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano20126(1): 935–943

[15]

Lee H ULee GPark J C. Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts. Chemical Engineering Journal2014240: 91–98

[16]

Wu FHu XFan J. Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics20138(2): 501–508

[17]

Liang YWang CKei C. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. The Journal of Physical Chemistry C2011115(19): 9498–9502

[18]

Jiang YZheng BDu J. Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta2013112(15): 129–135

[19]

Yang CBalakrishnan NBhethanabotla V R. Interplay between subnanometer Ag and Pt clusters and anatase TiO2 (101) surface: Implications for catalysis and photocatalysis. The Journal of Physical Chemistry C2014118(9): 4702–4714

[20]

Tanaka AHashimoto KKominami H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. Journal of the American Chemical Society2014136(2): 586–589

[21]

Long RPrezhdo O V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society2014136(11): 4343–4354

[22]

Huang Z ASun QLv K. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2Applied Catalysis B: Environmental2015164: 420–427

[23]

Wu LLi FXu Y. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Applied Catalysis B: Environmental2015164: 217–224

[24]

Shi LLiang LMa J. Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light. Catalysis Science & Technology20144(3): 758

[25]

Zhou WLiu HWang J. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Applied Materials & Interfaces20102(8): 2385–2392

[26]

Sarkar DGhosh C KMukherjee S. Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials & Interfaces20135(2): 331–337

[27]

Wang YZhang Y NZhao G. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Applied Materials & Interfaces20124(8): 3965–3972

[28]

Liao YQue WZhong P. A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Applied Materials & Interfaces20113(7): 2800–2804

[29]

Huo KWang HZhang X. Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem201277(4): 323–329

[30]

Zhao CZhu DCao S. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices and Microstructures201690: 257–264

[31]

Wang DLiu LZhang F. Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Letters201111(9): 3649–3655

[32]

Sun X MLi Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir200521(13): 6019‒6024 

[33]

Spanhel LWeller HHenglein A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society1987109(22): 6632–6635

[34]

Wang MSun LLin Z. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science20136(4): 1211–1220

[35]

Scanlon D ODunnill C WBuckeridge J. Band alignment of rutile and anatase TiO2. Nature Materials201312(9): 798–801

[36]

Zhao CShu XZhu D C. High visible light photocatalytic property of Co2+-doped TiO2 nanoparticles with mixed phases. Superlattices and Microstructures201588: 32–42

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (420KB)

1103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/