Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity

Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO

PDF(420 KB)
PDF(420 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 241-249. DOI: 10.1007/s11706-017-0386-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity

Author information +
History +

Abstract

TiO2 is active only in the ultraviolet region. To enhance the active ability, a combined method consisting of the anodic oxidation method and the hydrothermal method was developed to prepare highly ordered Ag–TiO2 nanocomposited arrays. The anodic oxidation was used to synthesize amorphous nanotubes with high chemical activity that subsequently served as highly ordered templates in preparing the final sample. The amorphous nanotubes got converted to highly ordered Ag–TiO2 (anatase) arrays in the silver nitrate & glucose aqueous solution via hydrothermal treatment. SEM and TEM results show that the Ag–TiO2 nanocomposite was composed of a large number of Ag nanoparticles and anatase TiO2 nanoparticles, and the morphology of those at the top of the arrays was found different from that of its trunk. The morphology evolution mechanism of the obtained sample was discussed. It is also revealed that the Ag–TiO2 nanocomposite has high visible-light photocatalytic activity.

Keywords

TiO2 / nanoparticles / silver / heterojunction

Cite this article

Download citation ▾
Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity. Front. Mater. Sci., 2017, 11(3): 241‒249 https://doi.org/10.1007/s11706-017-0386-8

References

[1]
Yin H, Wada Y, Kitamura T, . Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 2001, 11(6): 1694–1703
CrossRef Google scholar
[2]
Lapides A M, Ashford D L, Hanson K, . Stabilization of a ruthenium(II) polypyridyl dye on nanocrystalline TiO2 by an electropolymerized overlayer. Journal of the American Chemical Society, 2013, 135(41): 15450–15458
CrossRef Pubmed Google scholar
[3]
Durupthy O, Bill J, Aldinger F. Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape. Crystal Growth & Design, 2007, 7(12): 2696–2704
CrossRef Google scholar
[4]
Nguyen C K, Cha H G, Kang Y S. Axis-oriented, anatase TiO2 single crystals with dominant 001 and 100 facets. Crystal Growth & Design, 2011, 11(9): 3947–3953
CrossRef Google scholar
[5]
Tong H, Ouyang S, Bi Y, . Nano-photocatalytic materials: possibilities and challenges. Advanced Materials, 2012, 24(2): 229–251
CrossRef Pubmed Google scholar
[6]
Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M E, . Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19(14): 145605
CrossRef Pubmed Google scholar
[7]
Peng Y, Huang G, Huang W. Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Advanced Powder Technology, 2012, 23(1): 8–12
CrossRef Google scholar
[8]
Waterhouse G I N, Wahab A K, Al-Oufi M, . Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Scientific Reports, 2013, 3: 2849 (5 pages) doi:10.1038/srep02849
[9]
Kisch H. Semiconductor photocatalysis — mechanistic and synthetic aspects. Angewandte Chemie International Edition, 2013, 52(3): 812–847
CrossRef Pubmed Google scholar
[10]
Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019
CrossRef Pubmed Google scholar
[11]
De Trizio L, Buonsanti R, Schimpf A M, . Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chemistry of Materials, 2013, 25(16): 3383–3390
CrossRef Google scholar
[12]
Sacco O, Vaiano V, Han C, . Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Applied Catalysis B: Environmental, 2015, 164: 462–474
CrossRef Google scholar
[13]
Spadavecchia F, Cappelletti G, Ardizzone S, . Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Applied Catalysis B: Environmental, 2010, 96(3‒4): 314–322
CrossRef Google scholar
[14]
Lee W J, Lee J M, Kochuveedu S T, . Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano, 2012, 6(1): 935–943
CrossRef Pubmed Google scholar
[15]
Lee H U, Lee G, Park J C, . Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts. Chemical Engineering Journal, 2014, 240: 91–98
CrossRef Google scholar
[16]
Wu F, Hu X, Fan J, . Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics, 2013, 8(2): 501–508
CrossRef Google scholar
[17]
Liang Y, Wang C, Kei C, . Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. The Journal of Physical Chemistry C, 2011, 115(19): 9498–9502
CrossRef Google scholar
[18]
Jiang Y, Zheng B, Du J, . Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 2013, 112(15): 129–135
CrossRef Pubmed Google scholar
[19]
Yang C, Balakrishnan N, Bhethanabotla V R, . Interplay between subnanometer Ag and Pt clusters and anatase TiO2 (101) surface: Implications for catalysis and photocatalysis. The Journal of Physical Chemistry C, 2014, 118(9): 4702–4714
CrossRef Google scholar
[20]
Tanaka A, Hashimoto K, Kominami H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. Journal of the American Chemical Society, 2014, 136(2): 586–589
CrossRef Pubmed Google scholar
[21]
Long R, Prezhdo O V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 2014, 136(11): 4343–4354
CrossRef Pubmed Google scholar
[22]
Huang Z A, Sun Q, Lv K, . Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Applied Catalysis B: Environmental, 2015, 164: 420–427
CrossRef Google scholar
[23]
Wu L, Li F, Xu Y, . Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Applied Catalysis B: Environmental, 2015, 164: 217–224
CrossRef Google scholar
[24]
Shi L, Liang L, Ma J, . Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light. Catalysis Science & Technology, 2014, 4(3): 758
CrossRef Google scholar
[25]
Zhou W, Liu H, Wang J, . Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Applied Materials & Interfaces, 2010, 2(8): 2385–2392
CrossRef Pubmed Google scholar
[26]
Sarkar D, Ghosh C K, Mukherjee S, . Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials & Interfaces, 2013, 5(2): 331–337
CrossRef Pubmed Google scholar
[27]
Wang Y, Zhang Y N, Zhao G, . Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Applied Materials & Interfaces, 2012, 4(8): 3965–3972
CrossRef Pubmed Google scholar
[28]
Liao Y, Que W, Zhong P, . A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Applied Materials & Interfaces, 2011, 3(7): 2800–2804
CrossRef Pubmed Google scholar
[29]
Huo K, Wang H, Zhang X, . Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem, 2012, 77(4): 323–329
CrossRef Google scholar
[30]
Zhao C, Zhu D, Cao S. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices and Microstructures, 2016, 90: 257–264
CrossRef Google scholar
[31]
Wang D, Liu L, Zhang F, . Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Letters, 2011, 11(9): 3649–3655
CrossRef Pubmed Google scholar
[32]
Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21(13): 6019‒6024 
CrossRef Google scholar
[33]
Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society, 1987, 109(22): 6632–6635
CrossRef Google scholar
[34]
Wang M, Sun L, Lin Z, . p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science, 2013, 6(4): 1211–1220
CrossRef Google scholar
[35]
Scanlon D O, Dunnill C W, Buckeridge J, . Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12(9): 798–801
CrossRef Pubmed Google scholar
[36]
Zhao C, Shu X, Zhu D C, . High visible light photocatalytic property of Co2+-doped TiO2 nanoparticles with mixed phases. Superlattices and Microstructures, 2015, 88: 32–42

Acknowledgements

This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1601116 and KJ1501126), and the open project foundation of Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology (Grant No. KFJJ1302).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(420 KB)

Accesses

Citations

Detail

Sections
Recommended

/