Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

Xuan SHEN, Xiaohong XIA, Yongling DU, Chunming WANG

PDF(360 KB)
PDF(360 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 262-270. DOI: 10.1007/s11706-017-0385-9
RESEARCH ARTICLE

Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

Author information +
History +

Abstract

An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.

Keywords

electroless / Au nanoparticles / hydroquinone / catechol / sensor

Cite this article

Download citation ▾
Xuan SHEN, Xiaohong XIA, Yongling DU, Chunming WANG. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol. Front. Mater. Sci., 2017, 11(3): 262‒270 https://doi.org/10.1007/s11706-017-0385-9

References

[1]
Vilian A T E, Chen S M, Huang L H, . Simultaneous determination of catechol and hydroquinone using a Pt/ZrO2–RGO/GCE composite modified glassy carbon electrode. Electrochimica Acta, 2014, 125(12): 503–509
CrossRef Google scholar
[2]
Lai T, Cai W H, Dai W L, . Easy processing laser reduced graphene: a green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochimica Acta, 2014, 138: 48–55
CrossRef Google scholar
[3]
Goulart L A, Mascaro L H. GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochimica Acta, 2016, 196: 48–55
CrossRef Google scholar
[4]
Kerzic P J, Liu W S, Pan M T, . Analysis of hydroquinone and catechol in peripheral blood of benzene-exposed workers. Chemico-Biological Interactions, 2010, 184(1–2): 182–188
CrossRef Pubmed Google scholar
[5]
Xie T, Liu Q, Shi Y, . Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. Journal of Chromatography A, 2006, 1109(2): 317–321
CrossRef Pubmed Google scholar
[6]
Si W M, Lei W, Han Z, . Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sensors and Actuators B: Chemical, 2014, 199(4): 154–160
CrossRef Google scholar
[7]
Marrubini G, Calleri E, Coccini T, . Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographia, 2005, 62(1–2): 25–31
CrossRef Google scholar
[8]
Cui H, Zhang Q, Myint A, . Chemiluminescence of cerium(IV)–rhodamine 6G–phenolic compound system. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(2–3): 238–245
CrossRef Google scholar
[9]
Nagaraja P, Vasantha R A, Sunitha K R. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta, 2001, 55(6): 1039–1046
CrossRef Pubmed Google scholar
[10]
Garcia-Mesa J A, Mateos R. Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system. Journal of Agricultural and Food Chemistry, 2007, 55(10): 3863–3868
CrossRef Pubmed Google scholar
[11]
Pistonesi M F, Di Nezio M S, Centurión M E, . Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta, 2006, 69(5): 1265–1268
CrossRef Pubmed Google scholar
[12]
Zhang Y L, Xiao S X, Xie J L, . Simultaneous electrochemical determination of catechol and hydroquinone based on graphene–TiO2 nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014, 204(1): 102–108
CrossRef Google scholar
[13]
Song D M, Xia J F, Zhang F F, . Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B: Chemical, 2015, 206: 111–118
CrossRef Google scholar
[14]
Wang L, Zhang Y, Du Y, . Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2012, 16(4): 1323–1331
CrossRef Google scholar
[15]
Wang X, Wu M, Li H, . Simultaneous electrochemical determination of hydroquinone and catechol based on three-dimensional graphene/MWCNTs/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2014, 192: 452–458
CrossRef Google scholar
[16]
Wang Y, Xiong Y Y, Qu J Y, . Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sensors and Actuators B: Chemical, 2016, 223: 501–508
CrossRef Google scholar
[17]
Ghanem M A. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochemistry Communications, 2007, 9(10): 2501–2506
CrossRef Google scholar
[18]
Yu S, Jiang Y, Wang C. A polymer composite consists of electrochemical reduced grapheme oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta, 2013, 114: 430–438
CrossRef Google scholar
[19]
Wang L, Zheng Y, Lu X, . Dendritic copper–cobalt nanostructures/reduced grapheme oxide–chitosan modified glassy carbon electrode for glucose sensing. Sensors and Actuators B: Chemical, 2014, 195: 1–7
CrossRef Google scholar
[20]
Huang K J, Liu Y J, Zhang J Z, . A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sensors and Actuators B: Chemical, 2015, 209: 570–578
CrossRef Google scholar
[21]
Li M, Kong Q, Bian Z, . Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Biosensors & Bioelectronics, 2015, 65: 176–182
CrossRef Pubmed Google scholar
[22]
Rezaei B, Boroujeni M K, Ensafi A A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosensors & Bioelectronics, 2015, 66: 490–496
CrossRef Pubmed Google scholar
[23]
Oskam G, Long J G, Natarajan A, . Electrochemical deposition of metals onto silicon. Journal of Physics D: Applied Physics, 1998, 31(16): 1927–1949
CrossRef Google scholar
[24]
Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
CrossRef Google scholar
[25]
Yu S J, Jiang Y M, Wang C M. A polymer composite consists of electrochemical reduced grapheme oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta, 2013, 114: 430–438
CrossRef Google scholar
[26]
Xiang Q J, Yu J G, Jaroniec M J. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. The Journal of Physical Chemistry C, 2011, 115(15): 7355–7363
CrossRef Google scholar
[27]
Rak M J, Friščić T, Moores A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions, 2014, 170: 155–167
CrossRef Pubmed Google scholar
[28]
Yuan D H, Chen S H, Hu F X, . Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt–Au–organosilica@chitosan composites modified electrode. Sensors and Actuators B: Chemical, 2012, 168: 193–199
CrossRef Google scholar
[29]
Huo Z H, Zhou Y L, Liu Q, . Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchimica Acta, 2011, 173(1–2): 119–125
CrossRef Google scholar
[30]
Zheng L Z, Xiong L Y, Li Y D, . Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical, 2013, 177: 344–349
CrossRef Google scholar
[31]
Zhao D M, Zhang X H, Feng L J, . Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 2009, 74(1): 317–321
CrossRef Pubmed Google scholar
[32]
Wang C, Yuan R, Chai Y Q, . Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode. Analytical Methods, 2012, 4(6): 1626–1628
CrossRef Google scholar
[33]
Huang Y H, Chen J H, Sun X, . One-pot hydrothermal synthesis carbon nanocages-reduced grapheme oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors and Actuators B: Chemical, 2015, 212: 165–173
CrossRef Google scholar

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51372106).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(360 KB)

Accesses

Citations

Detail

Sections
Recommended

/