Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

Xuan SHEN , Xiaohong XIA , Yongling DU , Chunming WANG

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 262 -270.

PDF (360KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 262 -270. DOI: 10.1007/s11706-017-0385-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

Author information +
History +
PDF (360KB)

Abstract

An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.

Keywords

electroless / Au nanoparticles / hydroquinone / catechol / sensor

Cite this article

Download citation ▾
Xuan SHEN, Xiaohong XIA, Yongling DU, Chunming WANG. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol. Front. Mater. Sci., 2017, 11(3): 262-270 DOI:10.1007/s11706-017-0385-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vilian A T EChen S MHuang L H. Simultaneous determination of catechol and hydroquinone using a Pt/ZrO2–RGO/GCE composite modified glassy carbon electrode. Electrochimica Acta2014125(12): 503–509

[2]

Lai TCai W HDai W L. Easy processing laser reduced graphene: a green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochimica Acta2014138: 48–55

[3]

Goulart L AMascaro L H. GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochimica Acta2016196: 48–55

[4]

Kerzic P JLiu W SPan M T. Analysis of hydroquinone and catechol in peripheral blood of benzene-exposed workers. Chemico-Biological Interactions2010184(1–2): 182–188

[5]

Xie TLiu QShi Y. Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. Journal of Chromatography A20061109(2): 317–321

[6]

Si W MLei WHan Z. Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sensors and Actuators B: Chemical2014199(4): 154–160

[7]

Marrubini GCalleri ECoccini T. Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographia200562(1–2): 25–31

[8]

Cui HZhang QMyint A. Chemiluminescence of cerium(IV)–rhodamine 6G–phenolic compound system. Journal of Photochemistry and Photobiology A: Chemistry2006181(2–3): 238–245

[9]

Nagaraja PVasantha R ASunitha K R. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta200155(6): 1039–1046

[10]

Garcia-Mesa J AMateos R. Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system. Journal of Agricultural and Food Chemistry200755(10): 3863–3868

[11]

Pistonesi M FDi Nezio M SCenturión M E. Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta200669(5): 1265–1268

[12]

Zhang Y LXiao S XXie J L. Simultaneous electrochemical determination of catechol and hydroquinone based on graphene–TiO2 nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical2014204(1): 102–108

[13]

Song D MXia J FZhang F F. Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B: Chemical2015206: 111–118

[14]

Wang LZhang YDu Y. Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode. Journal of Solid State Electrochemistry201216(4): 1323–1331

[15]

Wang XWu MLi H. Simultaneous electrochemical determination of hydroquinone and catechol based on three-dimensional graphene/MWCNTs/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B: Chemical2014192: 452–458

[16]

Wang YXiong Y YQu J Y. Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sensors and Actuators B: Chemical2016223: 501–508

[17]

Ghanem M A. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochemistry Communications20079(10): 2501–2506

[18]

Yu SJiang YWang C. A polymer composite consists of electrochemical reduced grapheme oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta2013114: 430–438

[19]

Wang LZheng YLu X. Dendritic copper–cobalt nanostructures/reduced grapheme oxide–chitosan modified glassy carbon electrode for glucose sensing. Sensors and Actuators B: Chemical2014195: 1–7

[20]

Huang K JLiu Y JZhang J Z. A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sensors and Actuators B: Chemical2015209: 570–578

[21]

Li MKong QBian Z. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Biosensors & Bioelectronics201565: 176–182

[22]

Rezaei BBoroujeni M KEnsafi A A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosensors & Bioelectronics201566: 490–496

[23]

Oskam GLong J GNatarajan A. Electrochemical deposition of metals onto silicon. Journal of Physics D: Applied Physics199831(16): 1927–1949

[24]

Hummers W SOffeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society195880(6): 1339

[25]

Yu S JJiang Y MWang C M. A polymer composite consists of electrochemical reduced grapheme oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta2013114: 430–438

[26]

Xiang Q JYu J GJaroniec M J. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. The Journal of Physical Chemistry C2011115(15): 7355–7363

[27]

Rak M JFriščić TMoores A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions2014170: 155–167

[28]

Yuan D HChen S HHu F X. Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt–Au–organosilica@chitosan composites modified electrode. Sensors and Actuators B: Chemical2012168: 193–199

[29]

Huo Z HZhou Y LLiu Q. Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchimica Acta2011173(1–2): 119–125

[30]

Zheng L ZXiong L YLi Y D. Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical2013177: 344–349

[31]

Zhao D MZhang X HFeng L J. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces200974(1): 317–321

[32]

Wang CYuan RChai Y Q. Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode. Analytical Methods20124(6): 1626–1628

[33]

Huang Y HChen J HSun X. One-pot hydrothermal synthesis carbon nanocages-reduced grapheme oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors and Actuators B: Chemical2015212: 165–173

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (360KB)

1285

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/