Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer

Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI

PDF(367 KB)
PDF(367 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 233-240. DOI: 10.1007/s11706-017-0384-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer

Author information +
History +

Abstract

We have improved the photovoltaic performance of 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs.

Keywords

organic photovoltaic cells / squaraine / cathode buffer layer / power conversion efficiency / solution-process

Cite this article

Download citation ▾
Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer. Front. Mater. Sci., 2017, 11(3): 233‒240 https://doi.org/10.1007/s11706-017-0384-x

References

[1]
Yu G, Gao  J, Hummelen J C , . Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
CrossRef Google scholar
[2]
Li G, Zhu  R, Yang Y . Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
CrossRef Google scholar
[3]
Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research, 2012, 45(5): 723–733
CrossRef Pubmed Google scholar
[4]
Lin Y, Wang  J, Zhang Z G , . An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170–1174
CrossRef Pubmed Google scholar
[5]
Zheng Z, Zhang  S, Zhang M , . Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range. Advanced Materials, 2015, 27(7): 1189–1194
CrossRef Pubmed Google scholar
[6]
Chen G, Sasabe  H, Sasaki Y , . A series of squaraine dyes: effects of side chain and the number of hydroxyl groups on material properties and photovoltaic performance. Chemistry of Materials, 2014, 26(3): 1356–1364
CrossRef Google scholar
[7]
Huang J, Li  C Z, Chueh  C C, . 10.4% power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Advanced Energy Materials, 2015, 5(15): 3599–3606
CrossRef Google scholar
[8]
Lee Y H, Kim  D H, Arul  N S, . Improvement of the power conversion efficiency of organic photovoltaic cells with a P3HT layer fabricated by using a sonication process and having a vertically modulated nanoscale morphology. Applied Surface Science, 2013, 268: 156–162
CrossRef Google scholar
[9]
Luo J, Xiao  L, Chen Z , . Insulator MnO: Highly efficient and air-stable n-type doping layer for organic photovoltaic cells. Organic Electronics, 2010, 11(4): 664–669
CrossRef Google scholar
[10]
Chen G, Wang  T, Li C , . Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer. Organic Electronics, 2016, 36: 50–56
CrossRef Google scholar
[11]
You J, Dou  L, Yoshimura K , . A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4: 1446
CrossRef Pubmed Google scholar
[12]
He Z, Xiao  B, Liu F , . Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174–179
CrossRef Google scholar
[13]
Li S, Ye  L, Zhao W , . Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials, 2016, 28(42): 9423–9429
CrossRef Pubmed Google scholar
[14]
Wang J L, Yin  Q R, Miao  J S, . Rational design of small molecular donor for solution-processed organic photovoltaics with 8.1% efficiency and high fill factor via multiple fluorine substituents and thiophene bridge. Advanced Functional Materials, 2015, 25(23): 3514–3523
CrossRef Google scholar
[15]
Chen G, Sasabe  H, Sano T , . Chloroboron(III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24(48): 484007 (9 pages)
[16]
Sasabe H, Igrashi  T, Sasaki Y , . Soluble squaraine derivatives for 4.9% efficient organic photovoltaic cells. RSC Advances, 2014, 4(81): 42804–42807
CrossRef Google scholar
[17]
Kan B, Li  M, Zhang Q , . A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. Journal of the American Chemical Society, 2015, 137(11): 3886–3893
CrossRef Pubmed Google scholar
[18]
Chen G, Sasabe  H, Igarashi T , . Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14517–14534
CrossRef Google scholar
[19]
Si C, Chen  G, Wei B . Progress of organic photovoltaic cells based on squaraine small molecule donors and fullerene acceptors. Chinese Journal of Organic Chemistry, 2016, 36(11): 2602–2618 (in Chinese) 
CrossRef Google scholar
[20]
Wang S, Mayo  E I, Perez  M D, . High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor. Applied Physics Letters, 2009, 94(23): 233304 (3 pages) 
CrossRef Google scholar
[21]
Chen G, Sasabe  H, Wang X F , . A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192(6): 10–14
CrossRef Google scholar
[22]
Chen G, Sasabe  H, Wang Z , . Co-evaporated bulk heterojunction solar cells with>6.0% efficiency. Advanced Materials, 2012, 24(20): 2768–2773
CrossRef Pubmed Google scholar
[23]
Wei G, Wang  S, Renshaw K , . Solution-processed squaraine bulk heterojunction photovoltaic cells. ACS Nano, 2010, 4(4): 1927–1934
CrossRef Pubmed Google scholar
[24]
Chen G, Sasabe  H, Wang Z , . Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics, 2012, 14(42): 14661–14666
CrossRef Pubmed Google scholar
[25]
Wei G, Wang  S, Sun K , . Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells. Advanced Energy Materials, 2011, 1(2): 184–187
CrossRef Google scholar
[26]
Wang T, Chen  C, Guo K , . Improved performance of polymer solar cells by using inorganic, organic and doped cathode buffer layers. Chinese Physics B, 2016, 25(3): 428‒433
[27]
Tian M Q, Furuki  M, Iwasa I , . Search for squaraine derivatives that can be sublimed without thermal decomposition. The Journal of Physical Chemistry B, 2002, 106(17): 4370–4376 doi:10.1021/jp013698r
[28]
Ambade R B, Ambade  S B, Mane  R S, . Interfacial engineering importance of bilayered ZnO cathode buffer on the photovoltaic performance of inverted organic solar cells. ACS Applied Materials & Interfaces, 2015, 7(15): 7951–7960
CrossRef Pubmed Google scholar
[29]
Chen G, Si  C, Tang Z , . Temperature-dependent device performance of organic photovoltaic cells based on a squaraine dye. Synthetic Metals, 2016, 222: 293–298
CrossRef Google scholar
[30]
Koster L J A ,  Mihailetchi V D ,  Ramaker R , . Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Applied Physics Letters, 2005, 86(12): 123509 (3 pages)
[31]
Blom P W M ,  Mihailetchi V D ,  Koster L J A , . Device physics of polymer:fullerene bulk heterojunction solar cells. Advanced Materials, 2007, 19(12): 1551–1566
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61604093), the Natural Science Foundation of Shanghai (16ZR1411000), the Shanghai Pujiang Program (16PJ1403300), and the Shanghai University Young Teacher Training Program (ZZSD15049).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(367 KB)

Accesses

Citations

Detail

Sections
Recommended

/