Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer

Guo CHEN , Changfeng SI , Pengpeng ZHANG , Kunping GUO , Saihu PAN , Wenqing ZHU , Bin WEI

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 233 -240.

PDF (367KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 233 -240. DOI: 10.1007/s11706-017-0384-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer

Author information +
History +
PDF (367KB)

Abstract

We have improved the photovoltaic performance of 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs.

Keywords

organic photovoltaic cells / squaraine / cathode buffer layer / power conversion efficiency / solution-process

Cite this article

Download citation ▾
Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer. Front. Mater. Sci., 2017, 11(3): 233-240 DOI:10.1007/s11706-017-0384-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu GGao  JHummelen J C . Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science1995270(5243): 1789–1791

[2]

Li GZhu  RYang Y . Polymer solar cells. Nature Photonics20126(3): 153–161

[3]

Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research201245(5): 723–733

[4]

Lin YWang  JZhang Z G . An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials201527(7): 1170–1174

[5]

Zheng ZZhang  SZhang M . Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range. Advanced Materials201527(7): 1189–1194

[6]

Chen GSasabe  HSasaki Y . A series of squaraine dyes: effects of side chain and the number of hydroxyl groups on material properties and photovoltaic performance. Chemistry of Materials201426(3): 1356–1364

[7]

Huang JLi  C ZChueh  C C. 10.4% power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Advanced Energy Materials20155(15): 3599–3606

[8]

Lee Y HKim  D HArul  N S. Improvement of the power conversion efficiency of organic photovoltaic cells with a P3HT layer fabricated by using a sonication process and having a vertically modulated nanoscale morphology. Applied Surface Science2013268: 156–162

[9]

Luo JXiao  LChen Z . Insulator MnO: Highly efficient and air-stable n-type doping layer for organic photovoltaic cells. Organic Electronics201011(4): 664–669

[10]

Chen GWang  TLi C . Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer. Organic Electronics201636: 50–56

[11]

You JDou  LYoshimura K . A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications20134: 1446

[12]

He ZXiao  BLiu F . Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics20159(3): 174–179

[13]

Li SYe  LZhao W . Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials201628(42): 9423–9429

[14]

Wang J LYin  Q RMiao  J S. Rational design of small molecular donor for solution-processed organic photovoltaics with 8.1% efficiency and high fill factor via multiple fluorine substituents and thiophene bridge. Advanced Functional Materials201525(23): 3514–3523

[15]

Chen GSasabe  HSano T . Chloroboron(III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology201324(48): 484007 (9 pages)

[16]

Sasabe HIgrashi  TSasaki Y . Soluble squaraine derivatives for 4.9% efficient organic photovoltaic cells. RSC Advances20144(81): 42804–42807

[17]

Kan BLi  MZhang Q . A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. Journal of the American Chemical Society2015137(11): 3886–3893

[18]

Chen GSasabe  HIgarashi T . Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability20153(28): 14517–14534

[19]

Si CChen  GWei B . Progress of organic photovoltaic cells based on squaraine small molecule donors and fullerene acceptors. Chinese Journal of Organic Chemistry201636(11): 2602–2618 (in Chinese) 

[20]

Wang SMayo  E IPerez  M D. High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor. Applied Physics Letters200994(23): 233304 (3 pages) 

[21]

Chen GSasabe  HWang X F . A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals2014192(6): 10–14

[22]

Chen GSasabe  HWang Z . Co-evaporated bulk heterojunction solar cells with>6.0% efficiency. Advanced Materials201224(20): 2768–2773

[23]

Wei GWang  SRenshaw K . Solution-processed squaraine bulk heterojunction photovoltaic cells. ACS Nano20104(4): 1927–1934

[24]

Chen GSasabe  HWang Z . Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics201214(42): 14661–14666

[25]

Wei GWang  SSun K . Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells. Advanced Energy Materials20111(2): 184–187

[26]

Wang TChen  CGuo K . Improved performance of polymer solar cells by using inorganic, organic and doped cathode buffer layers. Chinese Physics B201625(3): 428‒433

[27]

Tian M QFuruki  MIwasa I . Search for squaraine derivatives that can be sublimed without thermal decomposition. The Journal of Physical Chemistry B2002106(17): 4370–4376 doi:10.1021/jp013698r

[28]

Ambade R BAmbade  S BMane  R S. Interfacial engineering importance of bilayered ZnO cathode buffer on the photovoltaic performance of inverted organic solar cells. ACS Applied Materials & Interfaces20157(15): 7951–7960

[29]

Chen GSi  CTang Z . Temperature-dependent device performance of organic photovoltaic cells based on a squaraine dye. Synthetic Metals2016222: 293–298

[30]

Koster L J A Mihailetchi V D Ramaker R . Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Applied Physics Letters200586(12): 123509 (3 pages)

[31]

Blom P W M Mihailetchi V D Koster L J A . Device physics of polymer:fullerene bulk heterojunction solar cells. Advanced Materials200719(12): 1551–1566

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (367KB)

1057

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/