Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation

Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU

PDF(324 KB)
PDF(324 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 130-138. DOI: 10.1007/s11706-017-0383-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation

Author information +
History +

Abstract

A novel Ag/AgCl/chitosan composite photocatalyst was successfully prepared by a simple one-step method. During this progress, environmentally benign chitosan not only served as reductant to reduce Ag+ to Ag0 species, but also acted as supporter for Ag/AgCl nanoparticles. XRD, SEM, EDX, UV-vis DRS and XPS were employed to characterize the as-prepared simples. SEM images of Ag/AgCl/chitosan composites revealed that Ag/AgCl nanoparticles were successfully loaded onto chitosan without obvious aggregation. All Ag/AgCl/chitosan composites exhibited efficient photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation. The result of photocatalytic degradation experiment indicated that 20% of the mass ratio of AgCl to chitosan was the optimum, and after 40 min photocatalytic reaction, the degradation rate reached about 96%.

Keywords

Ag/AgCl / surface plasmon resonance / one-step / chitosan / photocatalysis

Cite this article

Download citation ▾
Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation. Front. Mater. Sci., 2017, 11(2): 130‒138 https://doi.org/10.1007/s11706-017-0383-y

References

[1]
Sun L, Zhang  R, Wang Y , . Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS Applied Materials & Interfaces, 2014, 6(17): 14819–14826
Pubmed
[2]
Li W, Ma  Z, Bai G , . Dopamine-assisted one-step fabrication of Ag@AgCl nanophotocatalyst with tunable morphology, composition and improved photocatalytic performance. Applied Catalysis B: Environmental, 2015, 174–175: 43–48
CrossRef Google scholar
[3]
An C, Ming  X, Wang J , . Construction of magnetic visible-light-driven plasmonic Fe3O4@SiO2@AgCl:Ag nanophotocatalyst. Journal of Materials Chemistry, 2012, 22(11): 5171–5176
CrossRef Google scholar
[4]
Zhang S, Fan  Q, Gao H , . Formation of Fe3O4@MnO2 ball-in-ball hollow spheres as a high performance catalyst for enhanced catalytic performances. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(4): 1414–1422
CrossRef Google scholar
[5]
Huang H, Li  X, Wang J , . Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32−-doped Bi2O2CO3. ACS Catalysis, 2015, 5(7): 4094–4103
CrossRef Google scholar
[6]
Tian B, Dong  R, Zhang J , . Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation. Applied Catalysis B: Environmental, 2014, 158–159: 76–84
CrossRef Google scholar
[7]
Zhang S, Li  J, Wang X , . In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Applied Materials & Interfaces, 2014, 6(24): 22116–22125
CrossRef Pubmed Google scholar
[8]
Shu J, Wang  Z, Xia G , . One-pot synthesis of AgCl@Ag hybrid photocatalyst with high photocatalytic activity and photostability under visible light and sunlight irradiation. Chemical Engineering Journal, 2014, 252: 374–381
CrossRef Google scholar
[9]
Shi H, Chen  J, Li G , . Synthesis and characterization of novel plasmonic Ag/AgX–CNTs (X= Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light. ACS Applied Materials & Interfaces, 2013, 5(15): 6959–6967
CrossRef Pubmed Google scholar
[10]
Jia C, Yang  P, Huang B . Uniform Ag/AgCl necklace-like nano-heterostructures: fabrication and highly efficient plasmonic photocatalysis. ChemCatChem, 2014, 6(2): 611–617
CrossRef Google scholar
[11]
Sun L, Wang  Y, Chen W . Synthesis of novel CaCO3/Ag2CO3/AgI/Ag plasmonic photocatalyst with enhanced visible light photocatalytic activity. Science China: Technological Sciences, 2015, 58(11): 1864–1870
CrossRef Google scholar
[12]
Gao S T, Liu  W H, Shang  N Z, . Integration of a plasmonic semiconductor with a metal-organic framework: a case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity. RSC Advances, 2014, 4(106): 61736–61742
CrossRef Google scholar
[13]
Sohrabnezhad Sh, Zanjanchi  M A, Razavi  M. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite  under visible  light. Spectrochimica  Acta  Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 129–135
CrossRef Pubmed Google scholar
[14]
Yu H, Miller  C J, Ikeda-Ohno  A, . Photodegradation of contaminants using Ag@AgCl/rGO assemblages: possibilities and limitations. Catalysis Today, 2014, 224: 122–131
CrossRef Google scholar
[15]
Hu C, Peng  T, Hu X , . Plasmon-induced photodegradation of toxic pollutants with Ag–AgI/Al2O3 under visible-light irradiation. Journal of the American Chemical Society, 2010, 132(2): 857–862
CrossRef Pubmed Google scholar
[16]
Zhou X, Hu  C, Hu X , . Plasmon-assisted degradation of toxic pollutants with Ag–AgBr/Al2O3 under visible-light irradiation. The Journal of Physical Chemistry C, 2010, 114(6): 2746–2750
CrossRef Google scholar
[17]
Zhu H, Jiang  R, Fu Y , . Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 2012, 286: 41–48
CrossRef Google scholar
[18]
Wan Ngah W S ,  Teong L C ,  Hanafiah M A K M . Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4): 1446–1456
CrossRef Google scholar
[19]
Kumar P S, Selvakumar  M, Babu S G , . Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Advances, 2015, 5(71): 57493–57501
CrossRef Google scholar
[20]
Zhu H, Jiang  R, Xiao L , . Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. Journal of Hazardous Materials, 2009, 169(1–3): 933–940
CrossRef Pubmed Google scholar
[21]
Cao C, Xiao  L, Liu L , . Visible-light photocatalytic decolorization of reactive brilliant red X-3B on Cu2O/crosslinked-chitosan nanocomposites prepared via one step process. Applied Surface Science, 2013, 271: 105–112
CrossRef Google scholar
[22]
Mansur A A P ,  Mansur H S ,  Ramanery F P , . “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Applied Catalysis B: Environmental, 2014, 158–159: 269–279
CrossRef Google scholar
[23]
Wei D, Qian  W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids and Surfaces B: Biointerfaces, 2008, 62(1): 136–142
CrossRef Pubmed Google scholar
[24]
Wei D, Ye  Y, Jia X , . Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydrate Research, 2010, 345(1): 74–81
CrossRef Pubmed Google scholar
[25]
Wu Y, Wang  Z, Chen S , . One-step hydrothermal synthesis of silver nanoparticles loaded on N-doped carbon and application for catalytic reduction of 4-nitrophenol. RSC Advances, 2015, 5(106): 87151–87156
CrossRef Google scholar
[26]
Xu Y, Xu  H, Yan J , . A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties. Physical  Chemistry  Chemical  Physics,  2013,  15(16): 5821–5830
CrossRef Pubmed Google scholar
[27]
Min Y L, He  G Q, Xu  Q J, . Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photocatalytic system for pollutant removal. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(5): 1294–1301
CrossRef Google scholar
[28]
Yang Y, Zhang  G. Preparation and photocatalytic properties of visible light driven Ag–AgBr/attapulgite nanocomposite. Applied Clay Science, 2012, 67–68: 11–17
CrossRef Google scholar
[29]
Sun J, Zhang  Y, Cheng J , . Synthesis of Ag/AgCl/Zn–Cr LDHs composite with enhanced visible-light photocatalytic performance. Journal of Molecular Catalysis A: Chemical, 2014, 382: 146–153
CrossRef Google scholar
[30]
Zhu H, Xiao  L, Jiang R , . Efficient decolorization of azo dye solution by visible light-induced photocatalytic process using SnO2/ZnO heterojunction immobilized in chitosan matrix. Chemical Engineering Journal, 2011, 172(2–3): 746–753 
CrossRef Google scholar
[31]
Zhang S, Li  J, Wang X , . Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 10119–10126
CrossRef Google scholar
[32]
Wu Y, Chen  S, Guo X , . Environmentally benign chitosan as precursor and reductant for synthesis of Ag/AgCl/N-doped carbon composite photocatalysts and their photocatalytic degradation performance. Research on Chemical Intermediates, 2016, doi:10.1007/s11164-016-2835-x (14 pages)
CrossRef Google scholar
[33]
Shen C C, Zhu  Q, Zhao Z W , . Plasmon enhanced visible light photocatalytic activity of ternary Ag2Mo2O7@AgBr–Ag rod-like heterostructures. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14661–14668
CrossRef Google scholar
[34]
Wu S Z, Li  K, Zhang W D . On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Applied Surface Science, 2015, 324: 324–331
CrossRef Google scholar
[35]
Ye L, Liu  J, Gong C , . Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catalysis, 2012, 2(8): 1677–1683
CrossRef Google scholar
[36]
Liang Y, Lin  S, Hu J , . Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9 and photocatalytic degradation under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 2014, 383–384: 231–238
CrossRef Google scholar
[37]
Wang Y, Niu  C, Wang L , . Synthesis of fern-like Ag/AgCl/CaTiO3 plasmonic photocatalysts and their enhanced visible-light photocatalytic properties. RSC Advances, 2016, 6(53): 47873–47882
CrossRef Google scholar
[38]
Hu P, Hu  X, Chen C , . Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. CrystEngComm, 2014, 16(4): 649–653
CrossRef Google scholar
[39]
An C, Peng  S, Sun Y . Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst. Advanced Materials, 2010, 22(23): 2570–2574
CrossRef Pubmed Google scholar
[40]
Xue J, Ma  S, Zhou Y , . Facile synthesis of Ag2O/N-doped helical carbon nanotubes with enhanced visible-light photocatalytic activity. RSC Advances, 2015, 5(5): 3122–3129
CrossRef Google scholar
[41]
Ma J, Zou  J, Li L , . Synthesis and characterization of Ag3PO4 immobilized in bentonite for the sunlight-driven degradation of Orange II. Applied Catalysis B: Environmental, 2013, 134–135: 1–6
CrossRef Google scholar
[42]
Wang P, Huang  B, Qin X , . Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 2008, 47(41): 7931–7933
CrossRef Pubmed Google scholar
[43]
Han C, Ge  L, Chen C , . Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visible light induced photocatalytic activity. Journal of Materials Chemistry, 2014, 2(31): 12594–12600
CrossRef Google scholar
[44]
McEvoy J G, Cui  W, Zhang Z , . Synthesis and characterization of Ag/AgCl–activated carbon composites for enhanced visible light photocatalysis. Applied Catalysis B: Environmental, 2014, 144(2): 702–712
CrossRef Google scholar
[45]
Zhang Z, Zhai  S, Wang M , . Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. Journal of Alloys and Compounds, 2016, 659: 101–111
CrossRef Google scholar

Acknowledgements

This work was supported financially by funding from the National Natural Science Foundation of China (Grant Nos. 21367022 and 51662036) and Bingtuan Innovation Team in Key Areas (2015BD003).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(324 KB)

Accesses

Citations

Detail

Sections
Recommended

/