Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide

Qinglin SHENG , Dan ZHANG , Yu SHEN , Jianbin ZHENG

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 147 -154.

PDF (304KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 147 -154. DOI: 10.1007/s11706-017-0382-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide

Author information +
History +
PDF (304KB)

Abstract

A cubic Prussian blue (PB) with the hollow interior was successfully synthesized by direct dissociation followed by a controlled self-etching process. The etching process also made hollow Prussian blue (HPB) a porous structure. SEM, TEM and XRD were employed to confirm the structure and morphology of the prepared materials. Then HPB and chitosan (CS) were deposited on a glassy carbon electrode (GCE), used to determine H2O2. The amperometric performance of HPB/CS/GCE was investigated. It was found that the special structure of HPB exhibits enhanced performance in the H2O2 sensing.

Keywords

Prussian blue / hollow structure / hydrogen peroxide / sensor / non-enzyme / electrocatalyst

Cite this article

Download citation ▾
Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG. Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide. Front. Mater. Sci., 2017, 11(2): 147-154 DOI:10.1007/s11706-017-0382-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo X LXu J JZhao W. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosensors & Bioelectronics200419(10): 1295–1300

[2]

Cui XLiu GLin Y. Biosensors based on carbon nanotubes/nickel hexacyanoferrate/glucose oxidase nanocomposites. Journal of Biomedical Nanotechnology20051(3): 320–327

[3]

Lian W PWang LSong Y H. A hydrogen peroxide sensor based on electrochemically roughened silver electrodes. Electrochimica Acta200954(18): 4334–4339

[4]

Wang Q MNiu H LMao C J. Facile synthesis of trilaminar core–shell Ag@C@Ag nanospheres and their application for H2O2 detection. Electrochimica Acta2014127: 349–354

[5]

Shu XChen YYuan H. H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Analytical Chemistry200779(10): 3695–3702160;

[6]

Krishnan VXidis A LNeff V D. Prussian blue solid-state films and membranes as potassium ion-selective electrodes. Analytica Chimica Acta1990239: 7–12 

[7]

Kulesza P JMiecznikowski KMalik M A. Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer. Electrochimica Acta200146(26–27): 4065–4073

[8]

Itaya KShoji NUchida I. Catalysis of the reduction of molecular oxygen to water at prussian blue modified electrodes. Journal of the American Chemical Society1984106(12): 3423–3429

[9]

Chen WCai SRen Q Q. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst2012137(1): 49–58

[10]

Pandey P CPandey A KChauhan D S. Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochimica Acta201274: 23–31

[11]

Karyakin A APuganova E ABudashov I A. Prussian blue based nanoelectrode arrays for H2O2 detection. Analytical Chemistry200476(2): 474–478

[12]

O’Halloran M PPravda MGuilbault G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta200155(3): 605–611

[13]

Zhu XNiu XZhao H. Doping ionic liquid into Prussian blue-multiwalled carbon nanotubes modified screen-printed electrode to enhance the nonenzymatic H2O2 sensing performance. Sensors and Actuators B: Chemical2014195(5): 274–280

[14]

Karyakin A AGitelmacher V OKaryakina E E. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Analytical Letters199427(15): 2861–2869

[15]

Jin ELu XCui L. Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochimica Acta201055(24): 7230–7234

[16]

Zhang WWang LZhang N. Functionalization of single-walled carbon nanotubes with cubic prussian blue and its application for amperometric sensing. Electroanalysis200921(21): 2325–2330

[17]

Ameloot RVermoortele FVanhove W. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chemistry20113(5): 382–387

[18]

Liang GXu JWang X. Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian blue using miniemulsion periphery polymerization (MEPP). Journal of the American Chemical Society2009131(15): 5378–5379

[19]

Wei CCheng CZhao J. NiS hollow spheres for high-performance supercapacitors and non-enzymatic glucose sensors. Chemistry — An Asian Journal201510(3): 679–686

[20]

Meek S TGreathouse J AAllendorf M D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Advanced Materials201123(2): 249–267

[21]

Yang JCho MLee Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosensors & Bioelectronics201675: 15–22

[22]

Chen D LCao YChen Y. Rapid synthesis of hollow  Ni(OH)2 with low-crystallinity for the electrochemical detection of ascorbic acid with high sensitivity. RSC Advances20166(49): 43598–43604

[23]

Yang YDu J JLuo L M. Facile aqueous-phase synthesis and electrochemical properties of novel PtPd hollow nanocatalysts. Electrochimica Acta2016212: 966–972

[24]

Zhang LWu H BLou X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. Journal of the American Chemical Society2013135(29): 10664–10672

[25]

Tang XLiu YHou H. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta201080(5): 2182–2186

[26]

Zhang JLi JYang F. Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2. Sensors and Actuators B: Chemical2009143(1): 373–380

[27]

Wang Y TYu LZhu Z Q. Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sensors and Actuators B: Chemical2009136(2): 332–337

[28]

Shen QJiang JFan M. Prussian blue hollow nanostructures: Sacrificial template synthesis and application in hydrogen peroxide sensing. Journal of Electroanalytical Chemistry2014712(2): 132–138

[29]

Keihan A HSajjadi S. Improvement of the electrochemical and electrocatalytic behavior of Prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochimica Acta2013113: 803–809

[30]

Wang LYe YZhu H. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing. Nanotechnology201223(45): 455502

[31]

Li YZheng J BSheng Q L. Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Microchimica Acta2015182(1–2): 61–68

[32]

Wang J PGao HSun F L. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors and Actuators B: Chemical2014191(2): 612–618

[33]

Zhang BZhang XHuang D. Co9S8 hollow spheres for enhanced electrochemical detection of hydrogen peroxide. Talanta2015141: 73–79

[34]

Liu SYu BLi F. Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2. Electrochimica Acta2014141: 161–166

[35]

Nie G DLu X FLei J Y. Sacrificial template-assisted fabrication of palladium hollow nanocubes and their application in electrochemical detection toward hydrogen peroxide. Electrochimica Acta201399: 145–151

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (304KB)

1556

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/