Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide

Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG

PDF(304 KB)
PDF(304 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 147-154. DOI: 10.1007/s11706-017-0382-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide

Author information +
History +

Abstract

A cubic Prussian blue (PB) with the hollow interior was successfully synthesized by direct dissociation followed by a controlled self-etching process. The etching process also made hollow Prussian blue (HPB) a porous structure. SEM, TEM and XRD were employed to confirm the structure and morphology of the prepared materials. Then HPB and chitosan (CS) were deposited on a glassy carbon electrode (GCE), used to determine H2O2. The amperometric performance of HPB/CS/GCE was investigated. It was found that the special structure of HPB exhibits enhanced performance in the H2O2 sensing.

Keywords

Prussian blue / hollow structure / hydrogen peroxide / sensor / non-enzyme / electrocatalyst

Cite this article

Download citation ▾
Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG. Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide. Front. Mater. Sci., 2017, 11(2): 147‒154 https://doi.org/10.1007/s11706-017-0382-z

References

[1]
Luo X L, Xu J J, Zhao W, . A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosensors & Bioelectronics, 2004, 19(10): 1295–1300
CrossRef Pubmed Google scholar
[2]
Cui X, Liu G, Lin Y. Biosensors based on carbon nanotubes/nickel hexacyanoferrate/glucose oxidase nanocomposites. Journal of Biomedical Nanotechnology, 2005, 1(3): 320–327
CrossRef Google scholar
[3]
Lian W P, Wang L, Song Y H, . A hydrogen peroxide sensor based on electrochemically roughened silver electrodes. Electrochimica Acta, 2009, 54(18): 4334–4339
CrossRef Google scholar
[4]
Wang Q M, Niu H L, Mao C J, . Facile synthesis of trilaminar core–shell Ag@C@Ag nanospheres and their application for H2O2 detection. Electrochimica Acta, 2014, 127: 349–354
CrossRef Google scholar
[5]
Shu X, Chen Y, Yuan H, . H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Analytical Chemistry, 2007, 79(10): 3695–3702160;
CrossRef Pubmed Google scholar
[6]
Krishnan V, Xidis A L, Neff V D. Prussian blue solid-state films and membranes as potassium ion-selective electrodes. Analytica Chimica Acta, 1990, 239: 7–12 
CrossRef Google scholar
[7]
Kulesza P J, Miecznikowski K, Malik M A, . Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer. Electrochimica Acta, 2001, 46(26–27): 4065–4073
CrossRef Google scholar
[8]
Itaya K, Shoji N, Uchida I. Catalysis of the reduction of molecular oxygen to water at prussian blue modified electrodes. Journal of the American Chemical Society, 1984, 106(12): 3423–3429
CrossRef Google scholar
[9]
Chen W, Cai S, Ren Q Q, . Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 2012, 137(1): 49–58
CrossRef Pubmed Google scholar
[10]
Pandey P C, Pandey A K, Chauhan D S. Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochimica Acta, 2012, 74: 23–31
CrossRef Google scholar
[11]
Karyakin A A, Puganova E A, Budashov I A, . Prussian blue based nanoelectrode arrays for H2O2 detection. Analytical Chemistry, 2004, 76(2): 474–478
CrossRef Pubmed Google scholar
[12]
O’Halloran M P, Pravda M, Guilbault G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta, 2001, 55(3): 605–611
[13]
Zhu X, Niu X, Zhao H, . Doping ionic liquid into Prussian blue-multiwalled carbon nanotubes modified screen-printed electrode to enhance the nonenzymatic H2O2 sensing performance. Sensors and Actuators B: Chemical, 2014, 195(5): 274–280
CrossRef Google scholar
[14]
Karyakin A A, Gitelmacher V O, Karyakina E E. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Analytical Letters, 1994, 27(15): 2861–2869
CrossRef Google scholar
[15]
Jin E, Lu X, Cui L, . Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochimica Acta, 2010, 55(24): 7230–7234
CrossRef Google scholar
[16]
Zhang W, Wang L, Zhang N, . Functionalization of single-walled carbon nanotubes with cubic prussian blue and its application for amperometric sensing. Electroanalysis, 2009, 21(21): 2325–2330
CrossRef Google scholar
[17]
Ameloot R, Vermoortele F, Vanhove W, . Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chemistry, 2011, 3(5): 382–387
CrossRef Pubmed Google scholar
[18]
Liang G, Xu J, Wang X. Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian blue using miniemulsion periphery polymerization (MEPP). Journal of the American Chemical Society, 2009, 131(15): 5378–5379
CrossRef Pubmed Google scholar
[19]
Wei C, Cheng C, Zhao J, . NiS hollow spheres for high-performance supercapacitors and non-enzymatic glucose sensors. Chemistry — An Asian Journal, 2015, 10(3): 679–686
CrossRef Pubmed Google scholar
[20]
Meek S T, Greathouse J A, Allendorf M D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Advanced Materials, 2011, 23(2): 249–267
CrossRef Pubmed Google scholar
[21]
Yang J, Cho M, Lee Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosensors & Bioelectronics, 2016, 75: 15–22
CrossRef Pubmed Google scholar
[22]
Chen D L, Cao Y, Chen Y, . Rapid synthesis of hollow  Ni(OH)2 with low-crystallinity for the electrochemical detection of ascorbic acid with high sensitivity. RSC Advances, 2016, 6(49): 43598–43604
CrossRef Google scholar
[23]
Yang Y, Du J J, Luo L M, . Facile aqueous-phase synthesis and electrochemical properties of novel PtPd hollow nanocatalysts. Electrochimica Acta, 2016, 212: 966–972
CrossRef Google scholar
[24]
Zhang L, Wu H B, Lou X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. Journal of the American Chemical Society, 2013, 135(29): 10664–10672
CrossRef Pubmed Google scholar
[25]
Tang X, Liu Y, Hou H, . Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta, 2010, 80(5): 2182–2186
CrossRef Pubmed Google scholar
[26]
Zhang J, Li J, Yang F, . Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2. Sensors and Actuators B: Chemical, 2009, 143(1): 373–380
CrossRef Google scholar
[27]
Wang Y T, Yu L, Zhu Z Q, . Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sensors and Actuators B: Chemical, 2009, 136(2): 332–337
CrossRef Google scholar
[28]
Shen Q, Jiang J, Fan M, . Prussian blue hollow nanostructures: Sacrificial template synthesis and application in hydrogen peroxide sensing. Journal of Electroanalytical Chemistry, 2014, 712(2): 132–138
CrossRef Google scholar
[29]
Keihan A H, Sajjadi S. Improvement of the electrochemical and electrocatalytic behavior of Prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochimica Acta, 2013, 113: 803–809
CrossRef Google scholar
[30]
Wang L, Ye Y, Zhu H, . Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing. Nanotechnology, 2012, 23(45): 455502
CrossRef Pubmed Google scholar
[31]
Li Y, Zheng J B, Sheng Q L, . Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Microchimica Acta, 2015, 182(1–2): 61–68
CrossRef Google scholar
[32]
Wang J P, Gao H, Sun F L, . Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors and Actuators B: Chemical, 2014, 191(2): 612–618
CrossRef Google scholar
[33]
Zhang B, Zhang X, Huang D, . Co9S8 hollow spheres for enhanced electrochemical detection of hydrogen peroxide. Talanta, 2015, 141: 73–79
CrossRef Pubmed Google scholar
[34]
Liu S, Yu B, Li F, . Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2. Electrochimica Acta, 2014, 141: 161–166
CrossRef Google scholar
[35]
Nie G D, Lu X F, Lei J Y, . Sacrificial template-assisted fabrication of palladium hollow nanocubes and their application in electrochemical detection toward hydrogen peroxide. Electrochimica Acta, 2013, 99: 145–151
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the financial support of this project by the National Natural Science Foundation of China (Grant No. 21575113), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20126101110013), the Natural Science Fund of Shaanxi Province in China (Grant No. 2013KJXX-25), and the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (Grant Nos. 15JS100 and 16JS099).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(304 KB)

Accesses

Citations

Detail

Sections
Recommended

/