Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

Jin ZHANG, Li-Li PENG, Ying TANG, Huijie WU

PDF(367 KB)
PDF(367 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 139-146. DOI: 10.1007/s11706-017-0381-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

Author information +
History +

Abstract

Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.

Keywords

PbWO4 / twin-Christmas tree-like / growth mechanism / UV irradiation / photocatalyst

Cite this article

Download citation ▾
Jin ZHANG, Li-Li PENG, Ying TANG, Huijie WU. Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties. Front. Mater. Sci., 2017, 11(2): 139‒146 https://doi.org/10.1007/s11706-017-0381-0

References

[1]
Tian P, Zhang Y, Senevirathne K, . Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. ACS Nano, 2011, 5(4): 2970–2978
CrossRef Pubmed Google scholar
[2]
Mak A C, Yu C L, Yu J C, . A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Research, 2008, 1(6): 474–482
CrossRef Google scholar
[3]
Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179
CrossRef Pubmed Google scholar
[4]
Tang H, Chang S F, Jiang L Y, . Novel spindle-shaped nanoporous TiO2  coupled graphitic g-C3N4  nanosheets with enhanced visible-light photocatalytic activity. Ceramics International, 2016, 42(16): 18443–18452 
CrossRef Google scholar
[5]
Yang X, Chen Z, Xu J, . Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Applied Materials & Interfaces, 2015, 7(28): 15285–15293
CrossRef Pubmed Google scholar
[6]
Barth J V, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature, 2005, 437(7059): 671–679
CrossRef Pubmed Google scholar
[7]
Cerný P, Jelinkova H, Zverev P G, . Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics, 2004, 28(2): 113–143
CrossRef Google scholar
[8]
Angloher G, Bruckmayer M, Bucci C, . Limits on WIMP dark matter using sapphire cryogenic detectors. Astroparticle Physics, 2002, 18(1): 43–55
CrossRef Google scholar
[9]
Sundaram R, Nagaraja K S. Electrical and humidity sensing properties of lead(II) tungstate–tungsten(VI) oxide and zinc(II) tungstate–tungsten(VI) oxide composites. Materials Research Bulletin, 2004, 39(4–5): 581–590
CrossRef Google scholar
[10]
Faure N, Borel C, Couchaud M, . Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Applied Physics B: Lasers and Optics, 1996, 63(6): 593–598
[11]
Arora S K, Chudasama B. Flux growth and optoelectronic study of PbWO4 single crystals. Crystal Growth & Design, 2007, 7(2): 296–299
CrossRef Google scholar
[12]
Neiman Y, Guseva A F, Sharafutdinov A R. Origin of potential difference selfgenerated by reaction and transport processes. Solid State Ionics, 1997, 101–103: 367–372
CrossRef Google scholar
[13]
Zeng H C. Rectangular vacancy island formation and self-depletion in Czochralski-grown PbMoO4 single crystal during heat treatment. Journal of Crystal Growth, 1996, 160(1–2): 119–128
CrossRef Google scholar
[14]
Yu C L, Cao F F, Li X, . Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal, 2013, 219: 86–95
CrossRef Google scholar
[15]
Tang H, Li C S, Song H, . Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO4 microstructures. CrystEngComm, 2011, 13(16): 5119–5124
CrossRef Google scholar
[16]
Wang G Z, Hao C C. Fast synthesis and morphology control of lead tungstate microcrystals via a microwave-assisted method. Materials Research Bulletin, 2009, 44(2): 418–421
CrossRef Google scholar
[17]
Wang Y G, Yang L L, Wang Y J, . Controlled synthesis of PbWO4 dendrites by a simple sonochemical method. Journal of Alloys and Compounds, 2013, 554: 86–88
CrossRef Google scholar
[18]
Fu H B, Pan C S, Zhang L W, . Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42(4): 696–706
CrossRef Google scholar
[19]
Zhang Q, Yao W T, Chen X Y, . Nearly monodisperse tungstate MWO4 microspheres (M= Pb, Ca): surfactant-assisted solution synthesis and optical properties. Crystal Growth & Design, 2007, 7(8): 1423–1431
[20]
Crane M, Frost R L, Williams P A, . Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. Journal of Raman Spectroscopy, 2002, 33(1): 62–66
CrossRef Google scholar
[21]
Frost R L, Duong L, Weier M. Raman microscopy of selected tungstate minerals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(8–9): 1853–1859
CrossRef Pubmed Google scholar
[22]
Bastians S, Crump G, Griffith W P, . Raspite and studtite: Raman spectra of two unique minerals. Journal of Raman Spectroscopy, 2004, 35(8–9): 726–731
CrossRef Google scholar
[23]
Jin R C, Chen G, Pei J, . Facile solvothermal synthesis and growth mechanism of flower-like PbTe dendrites assisted by cyclodextrin. CrystEngComm, 2012, 14(6): 2327–2332
CrossRef Google scholar
[24]
Li Q, Yam V W W. High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications, 2006, 9(9): 1006–1008
CrossRef Pubmed Google scholar
[25]
Bonini M, Rossi S, Karlsson G, . Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir, 2006, 22(4): 1478–1484
CrossRef Pubmed Google scholar
[26]
Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971
CrossRef Pubmed Google scholar
[27]
Banfield J F, Welch S A, Zhang H, . Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289(5480): 751–754
CrossRef Pubmed Google scholar
[28]
Li Q, Shao M W, Yu G H, . A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites. Journal of Materials Chemistry, 2003, 13(2): 424–427
CrossRef Google scholar
[29]
Fu H B, Pan V S, Zhang L W, . Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42(4): 696–706
CrossRef Google scholar
[30]
Yu J G, Yu J C, Ho W K, . Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry, 2002, 26(5): 607–613
CrossRef Google scholar
[31]
Thongtem T, Phuruangrat A, Thongtem S. Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Current Applied Physics, 2008, 8(2): 189–197
CrossRef Google scholar
[32]
Zhang H, Fan X, Quan X, . Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environmental Science & Technology, 2011, 45(13): 5731–5736
CrossRef Pubmed Google scholar
[33]
Feng X, Guo H, Patel K, . High performance, recoverable Fe3O4–ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal, 2014, 244: 327–334
CrossRef Google scholar

Acknowledgements

This work was supported by the Chongqing Science & Technology Commission, China (Grant Nos. CSTC2015JCYJBX0126 and CSTC2016SHMSZX20001), the Key Laboratory of Analysis & Detection for Food Safety (Fuzhou University), Ministry of Education (Project No. FS-1402), the Foundation of Chongqing Municipal Education Commission (KJ1711292), and the Scientific Research Project of Chongqing University of Arts and Sciences (Project No. Y2015XC28).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(367 KB)

Accesses

Citations

Detail

Sections
Recommended

/