Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

Jin ZHANG , Li-Li PENG , Ying TANG , Huijie WU

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 139 -146.

PDF (367KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 139 -146. DOI: 10.1007/s11706-017-0381-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

Author information +
History +
PDF (367KB)

Abstract

Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.

Keywords

PbWO 4 / twin-Christmas tree-like / growth mechanism / UV irradiation / photocatalyst

Cite this article

Download citation ▾
Jin ZHANG, Li-Li PENG, Ying TANG, Huijie WU. Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties. Front. Mater. Sci., 2017, 11(2): 139-146 DOI:10.1007/s11706-017-0381-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tian PZhang YSenevirathne K. Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. ACS Nano20115(4): 2970–2978

[2]

Mak A CYu C LYu J C. A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Research20081(6): 474–482

[3]

Sun YXia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science2002298(5601): 2176–2179

[4]

Tang HChang S FJiang L Y. Novel spindle-shaped nanoporous TiO2  coupled graphitic g-C3N4  nanosheets with enhanced visible-light photocatalytic activity. Ceramics International201642(16): 18443–18452 

[5]

Yang XChen ZXu J. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Applied Materials & Interfaces20157(28): 15285–15293

[6]

Barth J VCostantini GKern K. Engineering atomic and molecular nanostructures at surfaces. Nature2005437(7059): 671–679

[7]

Cerný PJelinkova HZverev P G. Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics200428(2): 113–143

[8]

Angloher GBruckmayer MBucci C. Limits on WIMP dark matter using sapphire cryogenic detectors. Astroparticle Physics200218(1): 43–55

[9]

Sundaram RNagaraja K S. Electrical and humidity sensing properties of lead(II) tungstate–tungsten(VI) oxide and zinc(II) tungstate–tungsten(VI) oxide composites. Materials Research Bulletin200439(4–5): 581–590

[10]

Faure NBorel CCouchaud M. Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Applied Physics B: Lasers and Optics199663(6): 593–598

[11]

Arora S KChudasama B. Flux growth and optoelectronic study of PbWO4 single crystals. Crystal Growth & Design20077(2): 296–299

[12]

Neiman YGuseva A FSharafutdinov A R. Origin of potential difference selfgenerated by reaction and transport processes. Solid State Ionics1997101–103: 367–372

[13]

Zeng H C. Rectangular vacancy island formation and self-depletion in Czochralski-grown PbMoO4 single crystal during heat treatment. Journal of Crystal Growth1996160(1–2): 119–128

[14]

Yu C LCao F FLi X. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal2013219: 86–95

[15]

Tang HLi C SSong H. Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO4 microstructures. CrystEngComm201113(16): 5119–5124

[16]

Wang G ZHao C C. Fast synthesis and morphology control of lead tungstate microcrystals via a microwave-assisted method. Materials Research Bulletin200944(2): 418–421

[17]

Wang Y GYang L LWang Y J. Controlled synthesis of PbWO4 dendrites by a simple sonochemical method. Journal of Alloys and Compounds2013554: 86–88

[18]

Fu H BPan C SZhang L W. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin200742(4): 696–706

[19]

Zhang QYao W TChen X Y. Nearly monodisperse tungstate MWO4 microspheres (M= Pb, Ca): surfactant-assisted solution synthesis and optical properties. Crystal Growth & Design20077(8): 1423–1431

[20]

Crane MFrost R LWilliams P A. Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. Journal of Raman Spectroscopy200233(1): 62–66

[21]

Frost R LDuong LWeier M. Raman microscopy of selected tungstate minerals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy200460(8–9): 1853–1859

[22]

Bastians SCrump GGriffith W P. Raspite and studtite: Raman spectra of two unique minerals. Journal of Raman Spectroscopy200435(8–9): 726–731

[23]

Jin R CChen GPei J. Facile solvothermal synthesis and growth mechanism of flower-like PbTe dendrites assisted by cyclodextrin. CrystEngComm201214(6): 2327–2332

[24]

Li QYam V W W. High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications20069(9): 1006–1008

[25]

Bonini MRossi SKarlsson G. Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir200622(4): 1478–1484

[26]

Penn R LBanfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science1998281(5379): 969–971

[27]

Banfield J FWelch S AZhang H. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science2000289(5480): 751–754

[28]

Li QShao M WYu G H. A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites. Journal of Materials Chemistry200313(2): 424–427

[29]

Fu H BPan V SZhang L W. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin200742(4): 696–706

[30]

Yu J GYu J CHo W K. Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry200226(5): 607–613

[31]

Thongtem TPhuruangrat AThongtem S. Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Current Applied Physics20088(2): 189–197

[32]

Zhang HFan XQuan X. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environmental Science & Technology201145(13): 5731–5736

[33]

Feng XGuo HPatel K. High performance, recoverable Fe3O4–ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal2014244: 327–334

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (367KB)

937

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/