Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment

V. CHELLASAMY , P. THANGADURAI

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 162 -170.

PDF (373KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 162 -170. DOI: 10.1007/s11706-017-0380-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment

Author information +
History +
PDF (373KB)

Abstract

Electrochemically stable nanostructured nickel titanate (NiTiO3) was prepared by sol−gel method and the structural and electrochemical properties were studied in the presence of H2SO4 + CH3OH electrolyte. XRD and Raman studies confirmed the single phase of NiTiO3 with the rhombohedral structure. Thermal stability was studied by TGA. Microstructure analysis by SEM confirmed the uniformly distributed spherical shaped NiTiO3 particles, and TEM studies showed the spherical shaped particles with an average size of 90 nm. The UV-Vis analysis shows the absorption spectrum of NiTiO3, while the FTIR spectrum showed the vibrations related to Ni−O and Ti−O stretching. Electrochemical tests were carried out by cyclic voltammetry (CV) and polarization studies. The CV measurements were made at room temperature as well as at 60°C: at room temperature, the NiTiO3 did not show any activity towards methanol oxidation whereas there observed an activity at the potential of 0.69 V at the operating temperature of 60°C. The ilmenite structured NiTiO3 has oxygen vacancies, most probably on the surface, which could have also contributed to the methanol oxidation. Thus the nanostructured NiTiO3 is proposed to be an active support material for metal electrocatalysts.

Keywords

electrocatalyst / methanol oxidation / electrochemical / nanomaterials / NiTiO 3

Cite this article

Download citation ▾
V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment. Front. Mater. Sci., 2017, 11(2): 162-170 DOI:10.1007/s11706-017-0380-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yamamoto OTakeda  YKanno R . Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics198722(2–3): 241–246

[2]

Taylor D JFleig  P FSchwab  S T. Sol–gel derived, nanostructured oxide lubricant coatings. Surface and Coatings Technology1999120–121: 465–469

[3]

Wang YSantiago-Aviles  J J. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo–organic decomposition process. Nanotechnology200415(1): 32–36

[4]

Duan XHuang  YCui Y . Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature2001409(6816): 66–69

[5]

Hu JOdom  T WLieber  C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research199932(5): 435–445

[6]

Lin Y JChang  Y HChen  G J. Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. Journal of Alloys and Compounds2009479(1–2): 785–790

[7]

Qu YZhou  WRen Z . Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance. Journal of Materials Chemistry201222(32): 16471–16476

[8]

Dong WZhu  YHuang H . A performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk–shell nanostructures. Journal of Materials Chemistry A: Materials for Energy and Sustainability20131(34): 10030–10036

[9]

Traistaru G A Covaliu C I Matei V . Synthesis and characterization of NiTiO3 and NiFe2O4 as catalysts for toluene oxidation. Digest Journal of Nanomaterials and Biostructures20116(3): 1257–1263

[10]

Cheng F TShi  PMan H C . Nature of oxide layer formed on NiTi by anodic oxidation in methanol. Materials Letters200559(12): 1516–1520

[11]

White J HSammells  A F. Perovskite anode electrocatalysis for direct methanol fuel cells. Journal of the Electrochemical Society1993140(8): 2167–2177

[12]

Raghuveer VViswanathan  B. Can La2−xSrxCuO4 be used as anodes for direct methanol fuel cells? Fuel200281(17): 2191–2197

[13]

Yu H CFung  K ZGuo  T C. Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M= Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochimica Acta200450(2–3): 811–816

[14]

Merle GWessling  MNijmeijer K . Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science2011377(1–2): 1–35

[15]

Lin B Y S Kirk D J Thorpe S J . Performance of alkaline fuel cells: A possible future energy system? Journal of Power Sources2006161(1): 474–483

[16]

Hernández-Ramírez A Sánchez-Castro M E Alonso-Lemus I . Evaluation of the nickel titanate-modified Pt nanostructured catalyst for the ORR in alkaline media. Journal of the Electrochemical Society2016163(2): F16–F24

[17]

Marcilly CCourty  PDelmon B J . Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors. Journal of the American Ceramic Society197053(1): 56–57

[18]

Taguchi HMatsuda  DNagao M . Synthesis of perovskite-type (La1−xSrx)MnO3 (0<x<0.3) at low temperature. Journal of the American Ceramic Society199275(1): 201–202

[19]

Sreedhar KMitra  A. Low-temperature synthesis of lead tantalate pyrochlore solid solutions Pb1.5+x(Ta2−yPby)O7−δ (0.0<x<0.5; 0.0<y<0.6). Journal of the American Ceramic Society200083(2): 418–420

[20]

Lopes K PCavalcante  L SSimões  A Z. NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization. Journal of Alloys and Compounds2009468(1–2): 327–332

[21]

Pal NSaha  BKundu S K . A highly efficient non-enzymatic glucose biosensor based on a nanostructured NiTiO3/NiO material. New Journal of Chemistry201539(10): 8035–8043

[22]

Baraton M IBusca  GPrieto M C . On the vibrational spectra and structure of FeCrO3 and of the ilmenite-type compounds CoTiO3 and NiTiO3. Journal of Solid State Chemistry1994112(1): 9–14

[23]

Busco GRamis  GAmores J M G . FT Raman and FTIR studies of titanias and metatitanate powders. Journal of the Chemical Society, Faraday Transactions199490(20): 3181–3190

[24]

Gadsden J AInfrared Spectra of Minerals and Related Inorganic Compounds. London: Butterworths, 1975

[25]

Yamaguchi OMorimi  MKawabata H . Formation and transformation of ZnTiO3. Journal of the American Ceramic Society198770(5): C-97–C-98

[26]

Nagai TTanimoto  TYamazaki M . Compression behavior of NiTiO3-ilmenite. Photon Factory Activity Report200220(Part B): 221

[27]

Ruiz-Preciado M A Bulou A Makowska-Janusik M . Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm201618(18): 3229–3236

[28]

Mancharan RGoodenough  J B. Methanol oxidation in acid on ordered NiTi. Journal of Materials Chemistry19922(8): 875–887

[29]

Bellam J BRuiz-Preciado  M AEdely  M. Visible-light photocatalytic activity of nitrogen-doped NiTiO3 thin films prepared by a co-sputtering process. RSC Advances20155(14): 10551–10559

[30]

Li TWang  C CLei  C M. Conductivity relaxation in NiTiO3 at high temperatures. Current Applied Physics201313(8): 1728–1731

[31]

Zhou W JZhou  BLi W Z . Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. Journal of Power Sources2004126(1–2): 16–22

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (373KB)

1406

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/