Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment

V. CHELLASAMY, P. THANGADURAI

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 162-170.

PDF(373 KB)
PDF(373 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 162-170. DOI: 10.1007/s11706-017-0380-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment

Author information +
History +

Abstract

Electrochemically stable nanostructured nickel titanate (NiTiO3) was prepared by sol−gel method and the structural and electrochemical properties were studied in the presence of H2SO4 + CH3OH electrolyte. XRD and Raman studies confirmed the single phase of NiTiO3 with the rhombohedral structure. Thermal stability was studied by TGA. Microstructure analysis by SEM confirmed the uniformly distributed spherical shaped NiTiO3 particles, and TEM studies showed the spherical shaped particles with an average size of 90 nm. The UV-Vis analysis shows the absorption spectrum of NiTiO3, while the FTIR spectrum showed the vibrations related to Ni−O and Ti−O stretching. Electrochemical tests were carried out by cyclic voltammetry (CV) and polarization studies. The CV measurements were made at room temperature as well as at 60°C: at room temperature, the NiTiO3 did not show any activity towards methanol oxidation whereas there observed an activity at the potential of 0.69 V at the operating temperature of 60°C. The ilmenite structured NiTiO3 has oxygen vacancies, most probably on the surface, which could have also contributed to the methanol oxidation. Thus the nanostructured NiTiO3 is proposed to be an active support material for metal electrocatalysts.

Keywords

electrocatalyst / methanol oxidation / electrochemical / nanomaterials / NiTiO3

Cite this article

Download citation ▾
V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment. Front. Mater. Sci., 2017, 11(2): 162‒170 https://doi.org/10.1007/s11706-017-0380-1

References

[1]
Yamamoto O, Takeda  Y, Kanno R , . Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics, 1987, 22(2–3): 241–246
CrossRef Google scholar
[2]
Taylor D J, Fleig  P F, Schwab  S T, . Sol–gel derived, nanostructured oxide lubricant coatings. Surface and Coatings Technology, 1999, 120–121: 465–469
CrossRef Google scholar
[3]
Wang Y, Santiago-Aviles  J J. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo–organic decomposition process. Nanotechnology, 2004, 15(1): 32–36
CrossRef Google scholar
[4]
Duan X, Huang  Y, Cui Y , . Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409(6816): 66–69
CrossRef Pubmed Google scholar
[5]
Hu J, Odom  T W, Lieber  C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 1999, 32(5): 435–445
CrossRef Google scholar
[6]
Lin Y J, Chang  Y H, Chen  G J, . Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. Journal of Alloys and Compounds, 2009, 479(1–2): 785–790
CrossRef Google scholar
[7]
Qu Y, Zhou  W, Ren Z , . Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance. Journal of Materials Chemistry, 2012, 22(32): 16471–16476
[8]
Dong W, Zhu  Y, Huang H , . A performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk–shell nanostructures. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 10030–10036
CrossRef Google scholar
[9]
Traistaru G A ,  Covaliu C I ,  Matei V , . Synthesis and characterization of NiTiO3 and NiFe2O4 as catalysts for toluene oxidation. Digest Journal of Nanomaterials and Biostructures, 2011, 6(3): 1257–1263
[10]
Cheng F T, Shi  P, Man H C . Nature of oxide layer formed on NiTi by anodic oxidation in methanol. Materials Letters, 2005, 59(12): 1516–1520
CrossRef Google scholar
[11]
White J H, Sammells  A F. Perovskite anode electrocatalysis for direct methanol fuel cells. Journal of the Electrochemical Society, 1993, 140(8): 2167–2177
CrossRef Google scholar
[12]
Raghuveer V, Viswanathan  B. Can La2−xSrxCuO4 be used as anodes for direct methanol fuel cells? Fuel, 2002, 81(17): 2191–2197
CrossRef Google scholar
[13]
Yu H C, Fung  K Z, Guo  T C, . Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M= Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochimica Acta, 2004, 50(2–3): 811–816
CrossRef Google scholar
[14]
Merle G, Wessling  M, Nijmeijer K . Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011, 377(1–2): 1–35
CrossRef Google scholar
[15]
Lin B Y S ,  Kirk D J ,  Thorpe S J . Performance of alkaline fuel cells: A possible future energy system? Journal of Power Sources, 2006, 161(1): 474–483
CrossRef Google scholar
[16]
Hernández-Ramírez A ,  Sánchez-Castro M E ,  Alonso-Lemus I , . Evaluation of the nickel titanate-modified Pt nanostructured catalyst for the ORR in alkaline media. Journal of the Electrochemical Society, 2016, 163(2): F16–F24
CrossRef Google scholar
[17]
Marcilly C, Courty  P, Delmon B J . Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors. Journal of the American Ceramic Society, 1970, 53(1): 56–57
CrossRef Google scholar
[18]
Taguchi H, Matsuda  D, Nagao M , . Synthesis of perovskite-type (La1−xSrx)MnO3 (0<x<0.3) at low temperature. Journal of the American Ceramic Society, 1992, 75(1): 201–202
CrossRef Google scholar
[19]
Sreedhar K, Mitra  A. Low-temperature synthesis of lead tantalate pyrochlore solid solutions Pb1.5+x(Ta2−yPby)O7−δ (0.0<x<0.5; 0.0<y<0.6). Journal of the American Ceramic Society, 2000, 83(2): 418–420
CrossRef Google scholar
[20]
Lopes K P, Cavalcante  L S, Simões  A Z, . NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization. Journal of Alloys and Compounds, 2009, 468(1–2): 327–332
CrossRef Google scholar
[21]
Pal N, Saha  B, Kundu S K , . A highly efficient non-enzymatic glucose biosensor based on a nanostructured NiTiO3/NiO material. New Journal of Chemistry, 2015, 39(10): 8035–8043
CrossRef Google scholar
[22]
Baraton M I, Busca  G, Prieto M C , . On the vibrational spectra and structure of FeCrO3 and of the ilmenite-type compounds CoTiO3 and NiTiO3. Journal of Solid State Chemistry, 1994, 112(1): 9–14
CrossRef Google scholar
[23]
Busco G, Ramis  G, Amores J M G , . FT Raman and FTIR studies of titanias and metatitanate powders. Journal of the Chemical Society, Faraday Transactions, 1994, 90(20): 3181–3190
CrossRef Google scholar
[24]
Gadsden J A. Infrared Spectra of Minerals and Related Inorganic Compounds. London: Butterworths, 1975
[25]
Yamaguchi O, Morimi  M, Kawabata H , . Formation and transformation of ZnTiO3. Journal of the American Ceramic Society, 1987, 70(5): C-97–C-98
[26]
Nagai T, Tanimoto  T, Yamazaki M . Compression behavior of NiTiO3-ilmenite. Photon Factory Activity Report, 2002, 20(Part B): 221
[27]
Ruiz-Preciado M A ,  Bulou A ,  Makowska-Janusik M , . Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm, 2016, 18(18): 3229–3236
CrossRef Google scholar
[28]
Mancharan R, Goodenough  J B. Methanol oxidation in acid on ordered NiTi. Journal of Materials Chemistry, 1992, 2(8): 875–887
CrossRef Google scholar
[29]
Bellam J B, Ruiz-Preciado  M A, Edely  M, . Visible-light photocatalytic activity of nitrogen-doped NiTiO3 thin films prepared by a co-sputtering process. RSC Advances, 2015, 5(14): 10551–10559
CrossRef Google scholar
[30]
Li T, Wang  C C, Lei  C M, . Conductivity relaxation in NiTiO3 at high temperatures. Current Applied Physics, 2013, 13(8): 1728–1731
CrossRef Google scholar
[31]
Zhou W J, Zhou  B, Li W Z , . Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. Journal of Power Sources, 2004, 126(1–2): 16–22
CrossRef Google scholar

Acknowledgement

Financial support from DST-SERB, India (SR/FTP/PS-137/2010) to carry out this work is gratefully acknowledged. The CIF of Pondicherry University is also acknowledged.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(373 KB)

Accesses

Citations

Detail

Sections
Recommended

/