Crystal-chemistry insight into the photocatalytic activity of BiOClxBr1--x nanoplate solid solutions

Huan-Yan XU, Xu HAN, Qu TAN, Ke-Jia WU, Shu-Yan QI

PDF(446 KB)
PDF(446 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 120-129. DOI: 10.1007/s11706-017-0379-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Crystal-chemistry insight into the photocatalytic activity of BiOClxBr1--x nanoplate solid solutions

Author information +
History +

Abstract

In this study, a facile alcoholysis method was developed to synthesize BiOClxBr1--x nanoplates at room temperature and atmospheric pressure. In this route, strong acid or alkaline environment was absolutely avoided to realize the high exposure of {001} crystal facets. The regular changes in XRD peaks and cell parameters as a function of the Br content strongly declared that the obtained BiOClxBr1--x products belonged to a group of solid solutions. The 2D nanosheets with in-plane wrinkles were clearly observed in TEM images. Interestingly, as the Br content increased, band gaps of BiOClxBr1--x solid solutions gradually decreased. The photocatalytic degradation of RhB under simulated sunlight irradiation indicated that BiOCl0.5Br0.5 had the best photocatalytic activity. From the viewpoint of crystal chemistry, the photocatalytic activity of BiOClxBr1--x solid solutions was closely related with the exposure amount of {001} facets, interlayer spacing of (001) plane and energy-level position of valence band.

Keywords

BiOClxBr1--x solid solutions / {001} facets exposure / internal electric field / interlayer spacing / energy-level position

Cite this article

Download citation ▾
Huan-Yan XU, Xu HAN, Qu TAN, Ke-Jia WU, Shu-Yan QI. Crystal-chemistry insight into the photocatalytic activity of BiOClxBr1--x nanoplate solid solutions. Front. Mater. Sci., 2017, 11(2): 120‒129 https://doi.org/10.1007/s11706-017-0379-7

References

[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef Pubmed Google scholar
[2]
Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic application: a review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599
CrossRef Google scholar
[3]
Kuo Y L, Su T L, Kung F C, . A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts. Journal of Hazardous Materials, 2011, 190(1-3): 938–944
CrossRef Pubmed Google scholar
[4]
Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 2015, 44(7): 1861–1885
CrossRef Pubmed Google scholar
[5]
Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A, 2011, 115(46): 13211–13241
CrossRef Pubmed Google scholar
[6]
Nowotny J, Alim M A, Bak T, . Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chemical Society Reviews, 2015, 44(23): 8424–8442
CrossRef Pubmed Google scholar
[7]
Schneider J, Matsuoka M, Takeuchi M, . Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986
CrossRef Pubmed Google scholar
[8]
Kapilashrami M, Zhang Y, Liu Y S, . Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chemical Reviews, 2014, 114(19): 9662–9707
CrossRef Pubmed Google scholar
[9]
Meng X C, Zhang Z S. Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. Journal of Molecular Catalysis A: Chemical, 2016, 423: 533–549
CrossRef Google scholar
[10]
Bhachu D S, Moniz S J A, Sathasivam S, . Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chemical Science, 2016, 7(8): 4832–4841
CrossRef Google scholar
[11]
Li G, Qin F, Wang R, . BiOX (X= Cl, Br, I) nanostructures: mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr(VI) removal capacity. Journal of Colloid and Interface Science, 2013, 409: 43–51
CrossRef Pubmed Google scholar
[12]
Keramidas K G, Voutsas G P, Rentzeperis P I. The crystal structure of BiOCl. Zeitschrift fur Kristallographie, 1993, 205: 35–40
[13]
Bannister F A, Hey M H. The crystal-structure of the bismuth oxyhalides. Mineralogical Magazine, 1935, 24(149): 49–58
CrossRef Google scholar
[14]
Li J, Yu Y, Zhang L. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 2014, 6(15): 8473–8488
CrossRef Pubmed Google scholar
[15]
Xu Z F, Hao W C, Zhang Q F, . Indirect-direct band transformation of few-layer BiOCl under biaxial strain. Journal of Physical Chemistry C, 2016, 120(16): 8589–8594
CrossRef Google scholar
[16]
Cheng H, Huang B, Dai Y. Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 2014, 6(4): 2009–2026
CrossRef Pubmed Google scholar
[17]
Yin S, Di J, Li M, . Ionic liquid-assisted synthesis and improved photocatalytic activity of p-n junction g-C3N4/BiOCl. Journal of Materials Science, 2016, 51(10): 4769–4777
CrossRef Google scholar
[18]
Tripathi G K, Kurchania R. Effect of doping on structural, optical and photocatalytic properties of bismuth oxychloride nanomaterials. Journal of Materials Science Materials in Electronics, 2016, 27(5): 5079–5088
CrossRef Google scholar
[19]
Keller E, Krämer V. A strong deviation from Vegard’s rule: X-ray powder investigations of the three quasi-binary phase systems BiOX‒BiOY (X, Y= Cl, Br, I). Zeitschrift für Naturforschung B, 2014, 60(12): 1255–1263
[20]
Gnayem H, Sasson Y. Hierarchical nanostructured 3D flowerlike BiOClxBr1−x semiconductors with exceptional visible light photocatalytic activity. ACS Catalysis, 2013, 3(2): 186–191
CrossRef Google scholar
[21]
Mao X M, Fan C M. Effect of light response on the photocatalytic activity of BiOClxBr1−x in the removal of Rhodamine B from water. International Journal of Minerals Metallurgy and Materials, 2013, 20(11): 1089–1096
CrossRef Google scholar
[22]
Zhang X, Wang L W, Wang C Y, . Synthesis of BiOClxBr1−x nanoplate solid solutions as a robust photocatalyst with tunable band structure. Chemistry, 2015, 21(33): 11872–11877
CrossRef Pubmed Google scholar
[23]
Du D D, Li W J, Chen S S, . Synergistic degradation of rhodamine B on BiOClxBr1−x sheets by combined photosensitization and photocatalysis under visible light irradiation. New Journal of Chemistry, 2015, 39(4): 3129–3136
CrossRef Google scholar
[24]
Li T B, Chen G, Zhou C, . New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions, 2011, 40(25): 6751–6758
CrossRef Pubmed Google scholar
[25]
Xiao X, Hao R, Liang M, . One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. Journal of Hazardous Materials, 2012, 233‒234: 122–130
CrossRef Pubmed Google scholar
[26]
Dong F, Sun Y, Fu M, . Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. Journal of Hazardous Materials, 2012, 219‒220: 26–34
CrossRef Pubmed Google scholar
[27]
Sun L M, Xiang L, Zhao X, . Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catalysis, 2015, 5(6): 3540–3551
CrossRef Google scholar
[28]
Yang C Y, Li F, Zhang M, . Preparation and first-principles study for electronic structures of BiOI/BiOCl composites with highly improved photocatalytic and adsorption performances. Journal of Molecular Catalysis A: Chemical, 2016, 423: 1–11
CrossRef Google scholar
[29]
Jia Z F, Wang F M, Xin F, . Simple solvothermal routes to synthesize 3D BiOBrxI1−x microspheres and their visible-light-induced photocatalytic properties. Industrial & Engineering Chemistry Research, 2011, 50(11): 6688–6694
CrossRef Google scholar
[30]
Lin L, Huang M H, Long L P, . Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance. Ceramics International, 2014, 40(8): 11493–11501
CrossRef Google scholar
[31]
Zheng C, Cao C, Ali Z. In situ formed Bi/BiOBrxI1−x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity. Physical Chemistry Chemical Physics, 2015, 17(20): 13347–13354
CrossRef Pubmed Google scholar
[32]
Zhang X, Wang C Y, Wang L W, . Fabrication of BiOBrxI1−x photocatalysts with tunable visible light catalytic activity by modulating band structures. Scientific Reports, 2016, 6: 22800
CrossRef Pubmed Google scholar
[33]
Ou M Y, Dong F, Zhang W, . Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO)2CO3-BiOI solid solutions. Chemical Engineering Journal, 2014, 255: 650–658
CrossRef Google scholar
[34]
Ding J, Dai Z, Qin F, . Z-scheme BiO1−xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Applied Catalysis B: Environmental, 2017, 205: 281–291
CrossRef Google scholar
[35]
Tian F, Xiong J Y, Zhao H P, . Mannitol-assisted solvothermal synthesis of BiOCl hierarchical nanostructures and their mixed organic dye adsorption capacities. CrystEngComm, 2014, 16(20): 4298–4305
CrossRef Google scholar
[36]
Tian F, Zhang Y F, Li G F, . Thickness-tunable solvothermal synthesis of BiOCl nanosheets and their photosensitization catalytic performance. New Journal of Chemistry, 2015, 39(2): 1274–1280
CrossRef Google scholar
[37]
Li G F, Qin F, Yang H, . Facile microwave synthesis of 3D flowerlike BiOBr nanostructures and their excellent CrVI removal capacity. European Journal of Inorganic Chemistry, 2012, (15): 2508–2513
CrossRef Google scholar
[38]
Cui P Z, Wang J L, Wang Z M, . Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Research, 2016, 9(3): 593–601
CrossRef Google scholar
[39]
Xiong J Y, Cheng G, Qin F, . Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chemical Engineering Journal, 2013, 220: 228–236
CrossRef Google scholar
[40]
Chen H B, Yu X, Zhu Y, . Controlled synthesis of {001} facets-dominated dye-sensitized BiOCl with high photocatalytic efficiency under visible-light irradiation. Journal of Nanoparticle Research, 2016, 18(8): 225
CrossRef Google scholar
[41]
Li J, Zhang L, Li Y, . Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high {001} facet exposure percentages. Nanoscale, 2014, 6(1): 167–171
CrossRef Pubmed Google scholar
[42]
Lei Y Q, Wang G H, Song S Y, . Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm, 2009, 11(9): 1857–1862
CrossRef Google scholar
[43]
Liu Y, Son W J, Lu J, . Composition dependence of the photocatalytic activities of BiOCl1−xBrx solid solutions under visible light. Chemistry, 2011, 17(34): 9342–9349
CrossRef Pubmed Google scholar
[44]
Li H, Shi J, Zhao K, . Sustainable molecular oxygen activation with oxygen vacancies on the 001 facets of BiOCl nanosheets under solar light. Nanoscale, 2014, 6(23): 14168–14173
CrossRef Pubmed Google scholar
[45]
Feng H, Xu Z, Wang L, . Modulation of photocatalytic properties by strain in 2D BiOBr nanosheets. ACS Applied Materials & Interfaces, 2015, 7(50): 27592–27596
CrossRef Pubmed Google scholar
[46]
Xu H Y, Wu L C, Jin L G, . Combination mechanism and enhanced visible-light photocatalytic activity and stability of CdS/g-C3N4 heterojunctions. Journal of Materials Science and Technology, 2017, 33(1): 30–38
CrossRef Google scholar
[47]
Li J, Li H, Zhan G, . Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Accounts of Chemical Research, 2017, 50(1): 112–121
CrossRef Pubmed Google scholar
[48]
Xiong J Y, Cheng G, Li G F, . Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Advances, 2011, 1(8): 1542–1553
CrossRef Google scholar
[49]
Jiang J, Zhao K, Xiao X, . Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society, 2012, 134(10): 4473–4476
CrossRef Pubmed Google scholar
[50]
Zhao J L, Lv X W, Wang X X, . Fabrication of BiOX (X= Cl, Br, and I) nanosheeted films by anodization and their photocatalytic properties. Materials Letters, 2015, 158: 40–44
CrossRef Google scholar
[51]
Jia M, Hu X, Wang S, . Photocatalytic properties of hierarchical BiOXs obtained via an ethanol-assisted solvothermal process. Journal of Environmental Sciences, 2015, 35(9): 172–180
CrossRef Pubmed Google scholar
[52]
Zhang Y Y, Sun X G, Yang G Z, . Preparation and characterization of bifunctional BiOClxIy solid solutions with excellent adsorption and photocatalytic abilities for removal of organic dyes. Materials Science in Semiconductor Processing, 2016, 41: 193–199
CrossRef Google scholar
[53]
Zhang W D, Zhang Q, Dong F. Visible-light photocatalytic removal of NO in air over BiOX (X= Cl, Br, I) single-crystal nanoplates prepared at room temperature. Industrial & Engineering Chemistry Research, 2013, 52(20): 6740–6746
CrossRef Google scholar
[54]
Shang J, Hao W C, Lv X J, . Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light. ACS Catalysis, 2014, 4(3): 954–961
CrossRef Google scholar
[55]
Tian F, Zhao H P, Dai Z, . Mediation of valence band maximum of BiOI by Cl incorporation for improved oxidation power in photocatalysis. Industrial & Engineering Chemistry Research, 2016, 55(17): 4969–4978
CrossRef Google scholar

Acknowledgements

We express our great appreciation for the financial support of the Program for New Century Excellent Talents in Heilongjiang Provincial Universities (1253-NCET-010).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(446 KB)

Accesses

Citations

Detail

Sections
Recommended

/