Microstructure and mechanical properties of tungsten composite reinforced by fibre network

Linhui ZHANG , Yan JIANG , Qianfeng FANG , Zhuoming XIE , Shu MIAO , Longfei ZENG , Tao ZHANG , Xianping WANG , Changsong LIU

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 190 -196.

PDF (421KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 190 -196. DOI: 10.1007/s11706-017-0378-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Microstructure and mechanical properties of tungsten composite reinforced by fibre network

Author information +
History +
PDF (421KB)

Abstract

In this paper the tungsten-fibre-net-reinforced tungsten composites were produced by spark plasma sintering (SPS) using fine W powders and commercial tungsten fibres. The relative density of the samples is above 95%. It was found that the recrystallization area in the fibres became bigger with increasing sintering temperature and pressure. The tungsten grains of fibres kept stable when sintered at 1350°C/16 kN while grown up when sintered at 1800°C/16 kN. The composite sintered at 1350°C/16 kN have a Vickers-hardness of ~610 HV, about 2 times that of the 1800°C/16 kN sintered one. Tensile tests imply that the temperature at which the composites (1350°C/16 kN) begin to exhibit plastic deformation is about 200°C–250°C, which is 400°C lower than that of SPSed pure W. The tensile fracture surfaces show that the increasing fracture ductility comes from pull-out, interface debonding and fracture of fibres.

Keywords

tungsten-fibre-net / spark plasma sintering / recrystallization / tensile test

Cite this article

Download citation ▾
Linhui ZHANG, Yan JIANG, Qianfeng FANG, Zhuoming XIE, Shu MIAO, Longfei ZENG, Tao ZHANG, Xianping WANG, Changsong LIU. Microstructure and mechanical properties of tungsten composite reinforced by fibre network. Front. Mater. Sci., 2017, 11(2): 190-196 DOI:10.1007/s11706-017-0378-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu LLiu D PHong Y. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials2016471: 1–7

[2]

Li X WZhang M NZheng D H. The oxidation behavior of the WC–10 wt.% Ni3Al composite fabricated by spark plasma sintering. Journal of Alloys and Compounds2015629: 148–154

[3]

Dai S YWang LKirschner A. Kinetic modelling of material erosion and impurity transport in edge localized modes in EAST. Nuclear Fusion201555(4): 043003 (8 pages) 

[4]

Palacios TMonge M APastor J Y. Tungsten–vanadium–yttria alloys for fusion power reactors (I): Microstructural characterization. International Journal of Refractory Metals and Hard Materials201654: 433–438

[5]

Ekbom L B. Tungsten heavy-metals. Scandinavian Journal of Metallurgy199120(3): 190–197

[6]

Giannattasio AYao ZTarleton E. Brittle-ductile transitions in polycrystalline tungsten. Philosophical Magazine201090(30): 3947–3959

[7]

Miao SXie Z MYang X D. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W–0.5 wt.% TaC alloys. International Journal of Refractory Metals & Hard Materials201656: 8–17

[8]

Xie Z MZhang TLiu R. Grain growth behavior and mechanical properties of zirconium microalloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. International Journal of Refractory Metals & Hard Materials201551: 180–187

[9]

Liu S LYe X XJiang L. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing2016655: 269–276

[10]

Wang SChen CJia Y L. Effects of grain size on the microstructure and texture of cold-rolled Ta–2.5W alloy. International Journal of Refractory Metals & Hard Materials201658: 125–136

[11]

Sinclair RPreuss MMaire E. The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites. Acta Materialia200452(6): 1423–1438

[12]

Kimmig SAllen IYou J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials2013440(1–3): 272–277

[13]

Conner R DDandliker R BJohnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia199846(17): 6089–6102

[14]

 Carvalho P ALivramento VNunes D. Tungsten–tantalum composites for plasma facing applications. Materials for Energy, 2010, 4–8

[15]

Pemberton S ROberg E KDean J. The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology201171(3): 266–275

[16]

Son C YKim G SLee S B. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science201243(6): 1911–1920

[17]

Zhang BFu H MSha P F. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing2013566: 16–21

[18]

Riesch JBuffiere J YHoschen TIn situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Materialia201361(19): 7060–7071

[19]

Riesch JAumann MCoenen J W. Chemically deposited tungsten fibre-reinforced tungsten − The way to a mock-up for divertor applications. Nuclear Materials and Energy20169: 75–83

[20]

Zhang L HJiang YFang Q F. Toughness and microstructure of tungsten fibre net-reinforced tungsten composite produced by spark plasma sintering. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing2016659: 29–36

[21]

Du JHöschen TRasinski M. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing2010527(6): 1623–1629

[22]

Du JHöschen TRasinski M. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Composites Science and Technology201070(10): 1482–1489

[23]

Du JHöschen TRasinski M. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. Journal of Nuclear Materials2011417(1–3): 472–476

[24]

Xie Z MLiu RFang Q F. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. Journal of Nuclear Materials2014444(1–3): 175–180

[25]

Asrar NMeshkov L LSokolovskaya E M. Interdiffusional effects in tungsten fiber reinforced nickel-matrix composites. Transactions of the Indian Institute of Metals199043(6): 364–367

[26]

Lee M HDas JSordelet D J. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. Applied Physics Letters2012101(12): 124103

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (421KB)

869

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/