Electronic structure and bonding interactions in Ba1--xSrxZr0.1Ti0.9O3 ceramics

Jegannathan MANGAIYARKKARASI, Subramanian SASIKUMAR, Olai Vasu SARAVANAN, Ramachandran SARAVANAN

PDF(488 KB)
PDF(488 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 182-189. DOI: 10.1007/s11706-017-0376-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic structure and bonding interactions in Ba1--xSrxZr0.1Ti0.9O3 ceramics

Author information +
History +

Abstract

An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1xSrxZr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.

Keywords

barium titanate / X-ray diffraction / Rietveld refinement / maximum entropy method / bonding

Cite this article

Download citation ▾
Jegannathan MANGAIYARKKARASI, Subramanian SASIKUMAR, Olai Vasu SARAVANAN, Ramachandran SARAVANAN. Electronic structure and bonding interactions in Ba1--xSrxZr0.1Ti0.9O3 ceramics. Front. Mater. Sci., 2017, 11(2): 182‒189 https://doi.org/10.1007/s11706-017-0376-x

References

[1]
Rani R, Singh  S, Juneja J K , . Dielectric properties of Zr substituted BST ceramics. Ceramics International, 2011, 37(8): 3755–3758
CrossRef Google scholar
[2]
Buscaglia M T ,  Buscaglia V ,  Viviani M , . Influence of foreign ions on the crystal structure of BaTiO3. Journal of the European Ceramic Society, 2000, 20(12): 1997–2007
CrossRef Google scholar
[3]
Nanakorn N, Jalupoom  P, Vaneesorn N , . Dielectric and ferroelectric properties of Ba(ZrxTi1−x)O3 ceramics. Ceramics International, 2008, 34(4): 779–782
CrossRef Google scholar
[4]
Wu T B, Wu  C M, Chen  M L. High insulative barium zirconate–titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications. Applied Physics Letters, 1996, 69(18): 2659–2661
CrossRef Google scholar
[5]
Dixit A, Majumder  S B, Katiyar  R S, . Relaxor behavior in sol–gel derived BaZr0.40Ti0.60O3. Applied Physics Letters, 2003, 82(16): 2679–2681
CrossRef Google scholar
[6]
Swartz S L. Topics in electronic ceramics. IEEE Transactions on Electrical Insulation, 1990, 25(5): 935–987
CrossRef Google scholar
[7]
Cavalcante L S ,  Sczancoski J C ,  De Vicente F S , . Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. Journal of Sol-Gel Science and Technology, 2009, 49(1): 35–46
CrossRef Google scholar
[8]
Brankovic G, Brankovic  Z, Goes M S , . Barium strontium titanate powders prepared by spray pyrolysis. Materials Science and Engineering B, 2005, 122(2): 140–144
CrossRef Google scholar
[9]
Caruntu G, Rarig  R Jr, Dumitru I , . Annealing effects on the crystallite size and dielectric properties of ultra fine Ba1−xSrxTiO3 (0<x<1) powders synthesized through an oxalate-complex precursor. Journal of Materials Chemistry, 2006, 16(8): 752–758
CrossRef Google scholar
[10]
Nedelcu L, Ioachim  A, Toacsan M , . Synthesis and dielectric characterization of Ba0.6Sr0.4TiO3 ferroelectric ceramics. Thin Solid Films, 2011, 519(17): 5811–5815
CrossRef Google scholar
[11]
Chan N Y, Choy  S H, Wang  D Y, . High dielectric tunability of ferroelectric (Ba1−x,Srx)(Zr0.1,Ti0.9)O3 ceramics. Journal of Materials Science Materials in Electronics, 2014, 25(6): 2589–2594
CrossRef Google scholar
[12]
Kumar M, Garg  A, Kumar R , . Structural, dielectric and ferroelectric study of Ba0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol–gel method. Physica B: Condensed Matter, 2008, 403(10–11): 1819–1823
CrossRef Google scholar
[13]
Bhaskar Reddy S ,  Prasad Rao K ,  Ramachandra Rao M S . Structural and dielectric characterization of Sr substituted Ba(Zr,Ti)O3 based functional materials. Applied Physics A: Materials Science & Processing, 2007, 89(4): 1011–1015
CrossRef Google scholar
[14]
Bhaskar Reddy S ,  Prasad Rao K ,  Ramachandra Rao M S . Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. Journal of Alloys and Compounds, 2009, 481(1–2): 692–696
CrossRef Google scholar
[15]
Jain A, Saroha  R, Pastor M , . Effect of sintering duration on structural and electrical properties of Ba0.9Sr0.1Ti0.96Zr0.04O3 solid solution. Current Applied Physics, 2016, 16(8): 859–866
CrossRef Google scholar
[16]
Wang X, Huang  R, Zhao Y , . Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering. Journal of Alloys and Compounds, 2012, 533(1): 25–28
[17]
Tawade C M, Madolappa  S, Sharanappa N , . Microstructural and electrical study of (Ba0.6Sr0.4)(Zr1−xTix)O3 ceramics. IJRET, 2013, 2(8): 184–187
CrossRef Google scholar
[18]
Deng X Y, Wang  X H, Li  D J, . Electronic structure of nanograin barium titanate ceramics. Frontiers of Materials Science, 2007, 1(3): 316–318
CrossRef Google scholar
[19]
Saravanan R. Practical application of maximum entropy method in electron density and bonding studies. Physica Scripta, 2009, 79(4): 048303 (8 pages) 
CrossRef Google scholar
[20]
Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2(2): 65–71
CrossRef Google scholar
[21]
Collins D M. Electron density images from imperfect data by iterative entropy maximization. Nature, 1982, 298(5869): 49–51
CrossRef Google scholar
[22]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, 32(5): 751–767
CrossRef Google scholar
[23]
Petricek V, Dusek  M, Palatinus L . The crystallographic computing system JANA 2006: General features. Zeitschrift fur Kristallographie, 2014, 229(5): 345–352
[24]
Wyckoff R W G . Crystal Structures, Vol. 2. London: Inter-space Publishers, 1963
[25]
Thongtha A, Angsukased  K, Riyamongkol N , . Preparation of (Ba1−xSrx)(ZrxTi1−x)O3 ceramics via the solid state reaction method. Ferroelectrics, 2010, 403(1): 68–75 
CrossRef Google scholar
[26]
Saravanan R. GRAIN software (personal communication)
[27]
Izumi F, Dilanien  R A. Recent Research Developments in Physics, Part II , Vol. 3. Trivandrum, India: Transworld Research Network, 2002
[28]
MommaK, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis.Journal of Applied Crystallography, 2008, 41(3): 653–658 
CrossRef Google scholar
[29]
Tauc J, Grigorovici  R, Vancu Y . Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, 1966, 15(2): 627–637
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the authorities of “The Madura College, Madurai-11” for providing lab facilities, continuous support and encouragement to carry out the research work successfully. One of the authors (J.M.) is thankful to the Management of NMSSVN College, Nagamalai, Madurai-19 and UGC for the Faculty Development Programme of XII plan, the period in which this effective work was carried out.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(488 KB)

Accesses

Citations

Detail

Sections
Recommended

/