Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

Qin YANG , Yingying DU , Yifan WANG , Zhiying WANG , Jun MA , Jianglin WANG , Shengmin ZHANG

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 106 -119.

PDF (803KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 106 -119. DOI: 10.1007/s11706-017-0375-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

Author information +
History +
PDF (803KB)

Abstract

Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

Keywords

silicate-doped / molecular assembly / biomimetic bone / bone regeneration / osteoblastic differentiation

Cite this article

Download citation ▾
Qin YANG, Yingying DU, Yifan WANG, Zhiying WANG, Jun MA, Jianglin WANG, Shengmin ZHANG. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration. Front. Mater. Sci., 2017, 11(2): 106-119 DOI:10.1007/s11706-017-0375-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mieszawska A J Fourligas N Georgakoudi I . Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials201031(34): 8902–8910

[2]

Khan A FSaleem  MAfzal A . Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering C: Materials for Biological Applications201435: 245–252

[3]

Ma RTang  STan H . Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Applied Materials & Interfaces20146(15): 12214–12225

[4]

Wang SWang  XDraenert F G . Bioactive and biodegradable silica biomaterial for bone regeneration. Bone201467: 292–304

[5]

Pabbruwe M BStandard  O CSorrell  C C. Effect of silicon doping on bone formation within alumina porous domains. Journal of Biomedical Materials Research Part A200471(2): 250–257

[6]

Hing K ARevell  P ASmith  N. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials200627(29): 5014–5026

[7]

Nakata KKubo  TNumako C . Synthesis and characterization of silicon-doped hydroxyapatite. Materials Transactions200950(5): 1046–1049

[8]

Manchón AAlkhraisat  MRueda-Rodriguez C . Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. Journal of Biomedical Materials Research Part A2015103(2): 479–488

[9]

Aniagyei S EDufort  CKao C C . Self-assembly approaches to nanomaterial encapsulation in viral protein cages. Journal of Materials Chemistry200818(32): 3763–3774

[10]

He GDahl  TVeis A . Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials20032(8): 552–558

[11]

Koti A S R Periasamy N . Self-assembly of template-directed J-aggregates of porphyrin. Chemistry of Materials200315(2): 369–371

[12]

Weiner SWagner  H D. The material bone: Structure mechanical function relations. Annual Review of Materials Science199828(1): 271–298

[13]

Olszta M JCheng  X GJee  S S. Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports200758(3–5): 77–116

[14]

Wang JZhou  WHu W . Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A201199(3): 327–334

[15]

Hardy J GScheibel  T R. Composite materials based on silk proteins. Progress in Polymer Science201035(9): 1093–1115

[16]

Chakraborty JSinha  M KBasu  D. Biomolecular template-induced biomimetic coating of hydroxyapatite on an SS 316 L substrate. Journal of the American Ceramic Society200790(4): 1258–1261

[17]

Li XFeng  QLiu X . Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials200627(9): 1917–1923

[18]

Gleeson J PPlunkett  N AO’Brien  F J. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. European Cells & Materials201020: 218–230

[19]

Collins A MSkaer  N J VGheysens  T. Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Advanced Materials200921(1): 75–78

[20]

Denry IKuhn  L T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials201632(1): 43–53

[21]

Jiang C YWang  X YGunawidjaja  R. Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials200717(13): 2229–2237

[22]

Wang JZhou  WHu W . Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A201199(3): 327–334

[23]

Wen X-RTu  C-QWen X-H . Determination of acetylcysteine in pharmaceutical samples by silicomolybdenum blue spectrophotometry. Journal of the Chinese Chemical Society201562(3): 296–300

[24]

Wang JYang  QMao C . Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes. Journal of Biomedical Materials Research Part A2012100(11): 2929–2938

[25]

Wang YWang  JHao H In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano201610(11): 9927–9937

[26]

Yao JTjandra  WChen Y Z . Hydroxyapatite nanostructure material derived using cationic surfactant as a template. Journal of Materials Chemistry200313(12): 3053–3057

[27]

Wang JHu  WLiu Q . Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids and Surfaces B: Biointerfaces201185(2): 241–247

[28]

Tadic DEpple  M. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials200425(6): 987–994

[29]

Clem W CChowdhury  SCatledge S A . Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials200829(24–25): 3461–3468

[30]

Hu YCai  KLuo Z . Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials200930(21): 3626–3635

[31]

Birdi-Chouhan GShelton  R MBowen  J. Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances20166(102): 99809–99815

[32]

Bhuiyan DJablonsky  M JKolesov  I. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles. Acta Biomaterialia201515: 181–190

[33]

Li GChen  Z QWu  X H. Study of adherence of normal oral bacteria on polymethyl methyacrylate containing silver-supported silicate inorganic antibacteria. West China Journal of Stomatology200725(3): 280–284 (in Chinese)

[34]

Kundu BRajkhowa  RKundu S C . Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews201365(4): 457–470

[35]

Nazarov RJin  H JKaplan  D L. Porous 3-D scaffolds from regenerated silk  fibroin. Biomacromolecules20045(3): 718–726

[36]

Li LGuan  YLiu H . Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano20115(9): 7462–7470

[37]

Wu CChang  J. A review of bioactive silicate ceramics. Biomedical Materials20138(3): 032001

[38]

Han PWu  CXiao Y . The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells.  Biomaterials Science20131(4): 379–392

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (803KB)

1114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/