Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

Qin YANG, Yingying DU, Yifan WANG, Zhiying WANG, Jun MA, Jianglin WANG, Shengmin ZHANG

PDF(803 KB)
PDF(803 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 106-119. DOI: 10.1007/s11706-017-0375-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

Author information +
History +

Abstract

Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

Keywords

silicate-doped / molecular assembly / biomimetic bone / bone regeneration / osteoblastic differentiation

Cite this article

Download citation ▾
Qin YANG, Yingying DU, Yifan WANG, Zhiying WANG, Jun MA, Jianglin WANG, Shengmin ZHANG. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration. Front. Mater. Sci., 2017, 11(2): 106‒119 https://doi.org/10.1007/s11706-017-0375-y

References

[1]
Mieszawska A J ,  Fourligas N ,  Georgakoudi I , . Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31(34): 8902–8910
CrossRef Pubmed Google scholar
[2]
Khan A F, Saleem  M, Afzal A , . Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering C: Materials for Biological Applications, 2014, 35: 245–252
CrossRef Pubmed Google scholar
[3]
Ma R, Tang  S, Tan H , . Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Applied Materials & Interfaces, 2014, 6(15): 12214–12225
CrossRef Pubmed Google scholar
[4]
Wang S, Wang  X, Draenert F G , . Bioactive and biodegradable silica biomaterial for bone regeneration. Bone, 2014, 67: 292–304
CrossRef Pubmed Google scholar
[5]
Pabbruwe M B, Standard  O C, Sorrell  C C, . Effect of silicon doping on bone formation within alumina porous domains. Journal of Biomedical Materials Research Part A, 2004, 71(2): 250–257
CrossRef Pubmed Google scholar
[6]
Hing K A, Revell  P A, Smith  N, . Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 2006, 27(29): 5014–5026
CrossRef Pubmed Google scholar
[7]
Nakata K, Kubo  T, Numako C , . Synthesis and characterization of silicon-doped hydroxyapatite. Materials Transactions, 2009, 50(5): 1046–1049
CrossRef Google scholar
[8]
Manchón A, Alkhraisat  M, Rueda-Rodriguez C , . Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. Journal of Biomedical Materials Research Part A, 2015, 103(2): 479–488
CrossRef Pubmed Google scholar
[9]
Aniagyei S E, Dufort  C, Kao C C , . Self-assembly approaches to nanomaterial encapsulation in viral protein cages. Journal of Materials Chemistry, 2008, 18(32): 3763–3774
CrossRef Pubmed Google scholar
[10]
He G, Dahl  T, Veis A , . Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials, 2003, 2(8): 552–558
CrossRef Pubmed Google scholar
[11]
Koti A S R ,  Periasamy N . Self-assembly of template-directed J-aggregates of porphyrin. Chemistry of Materials, 2003, 15(2): 369–371
CrossRef Google scholar
[12]
Weiner S, Wagner  H D. The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998, 28(1): 271–298
CrossRef Google scholar
[13]
Olszta M J, Cheng  X G, Jee  S S, . Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 2007, 58(3–5): 77–116
CrossRef Google scholar
[14]
Wang J, Zhou  W, Hu W , . Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A, 2011, 99(3): 327–334
CrossRef Pubmed Google scholar
[15]
Hardy J G, Scheibel  T R. Composite materials based on silk proteins. Progress in Polymer Science, 2010, 35(9): 1093–1115
CrossRef Google scholar
[16]
Chakraborty J, Sinha  M K, Basu  D. Biomolecular template-induced biomimetic coating of hydroxyapatite on an SS 316 L substrate. Journal of the American Ceramic Society, 2007, 90(4): 1258–1261
CrossRef Google scholar
[17]
Li X, Feng  Q, Liu X , . Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 2006, 27(9): 1917–1923
CrossRef Pubmed Google scholar
[18]
Gleeson J P, Plunkett  N A, O’Brien  F J. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. European Cells & Materials, 2010, 20: 218–230
CrossRef Pubmed Google scholar
[19]
Collins A M, Skaer  N J V, Gheysens  T, . Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Advanced Materials, 2009, 21(1): 75–78
CrossRef Google scholar
[20]
Denry I, Kuhn  L T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016, 32(1): 43–53
CrossRef Pubmed Google scholar
[21]
Jiang C Y, Wang  X Y, Gunawidjaja  R, . Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials, 2007, 17(13): 2229–2237
CrossRef Google scholar
[22]
Wang J, Zhou  W, Hu W , . Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A, 2011, 99(3): 327–334
CrossRef Pubmed Google scholar
[23]
Wen X-R, Tu  C-Q, Wen X-H . Determination of acetylcysteine in pharmaceutical samples by silicomolybdenum blue spectrophotometry. Journal of the Chinese Chemical Society, 2015, 62(3): 296–300
CrossRef Google scholar
[24]
Wang J, Yang  Q, Mao C , . Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes. Journal of Biomedical Materials Research Part A, 2012, 100(11): 2929–2938
CrossRef Pubmed Google scholar
[25]
Wang Y, Wang  J, Hao H , . In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano, 2016, 10(11): 9927–9937
CrossRef Pubmed Google scholar
[26]
Yao J, Tjandra  W, Chen Y Z , . Hydroxyapatite nanostructure material derived using cationic surfactant as a template. Journal of Materials Chemistry, 2003, 13(12): 3053–3057
CrossRef Google scholar
[27]
Wang J, Hu  W, Liu Q , . Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids and Surfaces B: Biointerfaces, 2011, 85(2): 241–247
CrossRef Pubmed Google scholar
[28]
Tadic D, Epple  M. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials, 2004, 25(6): 987–994
CrossRef Pubmed Google scholar
[29]
Clem W C, Chowdhury  S, Catledge S A , . Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials, 2008, 29(24–25): 3461–3468
CrossRef Pubmed Google scholar
[30]
Hu Y, Cai  K, Luo Z , . Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials, 2009, 30(21): 3626–3635
CrossRef Pubmed Google scholar
[31]
Birdi-Chouhan G, Shelton  R M, Bowen  J, . Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances, 2016, 6(102): 99809–99815
CrossRef Google scholar
[32]
Bhuiyan D, Jablonsky  M J, Kolesov  I, . Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles. Acta Biomaterialia, 2015, 15: 181–190
CrossRef Pubmed Google scholar
[33]
Li G, Chen  Z Q, Wu  X H, . Study of adherence of normal oral bacteria on polymethyl methyacrylate containing silver-supported silicate inorganic antibacteria. West China Journal of Stomatology, 2007, 25(3): 280–284 (in Chinese)
Pubmed
[34]
Kundu B, Rajkhowa  R, Kundu S C , . Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 2013, 65(4): 457–470
CrossRef Pubmed Google scholar
[35]
Nazarov R, Jin  H J, Kaplan  D L. Porous 3-D scaffolds from regenerated silk  fibroin. Biomacromolecules, 2004, 5(3): 718–726
CrossRef Pubmed Google scholar
[36]
Li L, Guan  Y, Liu H , . Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 2011, 5(9): 7462–7470
CrossRef Pubmed Google scholar
[37]
Wu C, Chang  J. A review of bioactive silicate ceramics. Biomedical Materials, 2013, 8(3): 032001
CrossRef Pubmed Google scholar
[38]
Han P, Wu  C, Xiao Y . The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells.  Biomaterials Science, 2013, 1(4): 379–392

Disclosure of potential conflicts of interests

The authors declare no competing financial interest.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 81461148032, 81471792, 31430029, 81601610 and 31670968), the HUST Key Innovation Team Foundation for Interdisciplinary Promotion (2016JCTD101), and the Research Fund for the Doctoral Program of Higher Education of China (20110142110034). We also thank the Analytical and Testing Center of HUST for XRD, FTIR and TEM testing.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(803 KB)

Accesses

Citations

Detail

Sections
Recommended

/