Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries

Yingfang ZHU, Jingwei YOU, Haifu HUANG, Guangxu LI, Wenzheng ZHOU, Jin GUO

PDF(397 KB)
PDF(397 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 155-161. DOI: 10.1007/s11706-017-0374-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries

Author information +
History +

Abstract

A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co-precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were investigated. The results indicate that calcination temperature of the sample at 850°C can improve the integrity of structural significantly. The effect of calcination temperature varying from 750°C to 950°C on the electrochemical performance of Li[Ni1/3Mn1/3Co1/3]O2, cathode material of lithium-ion batteries, has been investigated. The results show that Li[Ni1/3Mn1/3Co1/3]O2 calcined at 850°C possesses a higher capacity retention and better rate capability than other samples. The reversible capacity is up to 178.6 mA·h·g−1, and the discharge capacity still remains 176.3 mA·h·g−1 after 30 cycles. Moreover, our strategy provides a simple and highly versatile route in fabricating cathode materials for lithium-ion batteries.

Keywords

Li[Mn1/3Ni1/3Co1/3]O2 / cathode material / oxalate co-precipitation / lithium-ion battery

Cite this article

Download citation ▾
Yingfang ZHU, Jingwei YOU, Haifu HUANG, Guangxu LI, Wenzheng ZHOU, Jin GUO. Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries. Front. Mater. Sci., 2017, 11(2): 155‒161 https://doi.org/10.1007/s11706-017-0374-z

References

[1]
Rao C V, Reddy  A L M, Ishikawa  Y, . LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2011, 3(8): 2966–2972
CrossRef Pubmed Google scholar
[2]
Tan S, Wang  L, Bian L , . Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification. Journal of Power Sources, 2015, 277: 139–146
CrossRef Google scholar
[3]
Hashem A M A ,  Abdel-Ghany A E ,  Eid A E , . Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. Journal of Power Sources, 2011, 196(20): 8632–8637
CrossRef Google scholar
[4]
Cuisinier M, Dupré  N, Martin J F , . Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR. Journal of Power Sources, 2013, 224: 50–58
CrossRef Google scholar
[5]
Shaju K M, Rao  G V S, Chowdari  B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta, 2002, 48(2): 145–151
CrossRef Google scholar
[6]
Lu Z H, Macneil  D D, Dahn  J R. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 2001, 4(11): A191–A194
CrossRef Google scholar
[7]
Belharouak I, Sun  Y K, Liu  J, . Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. Journal of Power Sources, 2003, 123(2): 247–252
CrossRef Google scholar
[8]
Park S, Yoon  C, Kang S , . Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta, 2004, 49(4): 557–563
CrossRef Google scholar
[9]
Yang Y, Xu  S, Xie M , . Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2. Journal of Alloys and Compounds, 2015, 619: 846–853 
CrossRef Google scholar
[10]
Wang Z, Sun  Y, Chen L , . Electrochemical characterization of positive electrode material Li(Ni1/3Co1/3Mn1/3)O2 and compati-bility with electrolyte for lithium-ion batteries. Journal of the Electrochemical Society, 2004, 151(6): A914–A921
CrossRef Google scholar
[11]
Yoon W S, Balasubramanian  M, Yang X Q , . Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge. Journal of the Electrochemical Society, 2004, 151(2): A246–A251
CrossRef Google scholar
[12]
Myung S T, Lee  M H, Komaba  S, . Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 2005, 50(24): 4800–4806
CrossRef Google scholar
[13]
Liu L, Jiao  L, Sun J , . Electrochemical performance of LiV3−2xNixMnxO8 cathode materials synthesized by the sol–gel method. Solid State Ionics, 2008, 178(33–34): 1756–1761
CrossRef Google scholar
[14]
Liu Z M, Hu  G R, Peng  Z D, . Synthesis and characterization of layered Li(Ni1/3Mn1/3Co1/3)O2 cathode materials by spray-drying method. Transactions of Nonferrous Metals Society of China, 2007, 17(2): 291–295
CrossRef Google scholar
[15]
Lu Z, Macneil  D D, Dahn  J R. Layered cathode materials Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 2004, 7(12): A503–A506
[16]
Macneil D D, Lu  Z H, Dahn  J R. Structure and electrochemistry of Li[NixCo1−2xMnx]O2 (0<x<1/2). Electrochemical and Solid-State Letters, 2002, 149(10): A1332–A1336
[17]
Cho T H, Shiosaki  Y, Noguchi H . Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. Journal of Power Sources, 2006, 159(2): 1322–1327
CrossRef Google scholar
[18]
Gao J, Manthiram  A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. Journal of Power Sources, 2009, 191(2): 644–647
CrossRef Google scholar
[19]
Gao Y, Yakovleva  M V, Ebner  W B. Novel Li[Li0.2Mn0.54Ni0.13Co0.13]O2 compounds as cathode materials for safer lithium-ion batteries. Electrochemical Society, 1998, 1(3): 117–119
[20]
Dahn J R. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics, 1990, 44(1–2): 87–97
CrossRef Google scholar
[21]
Ohzuku T, Ueda  A, Nagayama M . Electrochemistry and structural chemistry of LiNiO2 (R 3¯ m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society, 1993, 140(7): 1862–1870
CrossRef Google scholar
[22]
Li W, Reimers  J N, Dahn  J R. In situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics, 1993, 67(1–2): 123–130
CrossRef Google scholar
[23]
Liu L, Zhang  N, Sun K , . High rate performance of Li[Ni1/3 Co1/3Mn1/3]O2 synthesized via co-precipitation method by different precipitators. Journal of Physics and Chemistry of Solids, 2009, 70(3–4): 727–731
CrossRef Google scholar
[24]
Reimers J N, Dahn  J R, Greedan  J E, . Spin glass behavior in the frustrated antiferromagnetic LiNiO2. Journal of Solid State Chemistry, 1993, 102(2): 542–552
CrossRef Google scholar
[25]
Zheng J M, Li  J, Zhang Z R , . The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27–32): 1794–1799
CrossRef Google scholar
[26]
Guo R, Shi  P, Cheng X , . Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochimica Acta, 2009, 54(24): 5796–5803
CrossRef Google scholar
[27]
Manikandan P, Periasamy  P. Novel mixed hydroxy-carbonate precursor assisted synthetic technique for LiNi1/3Mn1/3Co1/3O2 cathode materials. Materials Research Bulletin, 2014, 50: 132–140
CrossRef Google scholar
[28]
Song D, Wang  X, Zhou E , . Recovery and heat treatment of the LiNi1/3Co1/3Mn1/3O2 cathode scrap material for lithium ion battery. Journal of Power Sources, 2013, 232: 348–352
CrossRef Google scholar
[29]
Sa Q, Gratz  E, He M , . Synthesis of high performance LiNi1/3 Co1/3Mn1/3O2 from lithium ion battery recovery stream. Journal of Power Sources, 2015, 282: 140–145
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51571065 and 51271061) and the Natural Science Foundation of Guangxi (Grant Nos. 2013GXNSFGA019007 and 2014GXNSFAA118340).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(397 KB)

Accesses

Citations

Detail

Sections
Recommended

/