Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries

Yingfang ZHU , Jingwei YOU , Haifu HUANG , Guangxu LI , Wenzheng ZHOU , Jin GUO

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 155 -161.

PDF (397KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 155 -161. DOI: 10.1007/s11706-017-0374-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries

Author information +
History +
PDF (397KB)

Abstract

A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co-precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were investigated. The results indicate that calcination temperature of the sample at 850°C can improve the integrity of structural significantly. The effect of calcination temperature varying from 750°C to 950°C on the electrochemical performance of Li[Ni1/3Mn1/3Co1/3]O2, cathode material of lithium-ion batteries, has been investigated. The results show that Li[Ni1/3Mn1/3Co1/3]O2 calcined at 850°C possesses a higher capacity retention and better rate capability than other samples. The reversible capacity is up to 178.6 mA·h·g−1, and the discharge capacity still remains 176.3 mA·h·g−1 after 30 cycles. Moreover, our strategy provides a simple and highly versatile route in fabricating cathode materials for lithium-ion batteries.

Keywords

Li[Mn 1/3Ni 1/3Co 1/3]O 2 / cathode material / oxalate co-precipitation / lithium-ion battery

Cite this article

Download citation ▾
Yingfang ZHU, Jingwei YOU, Haifu HUANG, Guangxu LI, Wenzheng ZHOU, Jin GUO. Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries. Front. Mater. Sci., 2017, 11(2): 155-161 DOI:10.1007/s11706-017-0374-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rao C VReddy  A L MIshikawa  Y. LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries. ACS Applied Materials & Interfaces20113(8): 2966–2972

[2]

Tan SWang  LBian L . Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification. Journal of Power Sources2015277: 139–146

[3]

Hashem A M A Abdel-Ghany A E Eid A E . Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. Journal of Power Sources2011196(20): 8632–8637

[4]

Cuisinier MDupré  NMartin J F . Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR. Journal of Power Sources2013224: 50–58

[5]

Shaju K MRao  G V SChowdari  B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta200248(2): 145–151

[6]

Lu Z HMacneil  D DDahn  J R. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters20014(11): A191–A194

[7]

Belharouak ISun  Y KLiu  J. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. Journal of Power Sources2003123(2): 247–252

[8]

Park SYoon  CKang S . Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta200449(4): 557–563

[9]

Yang YXu  SXie M . Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2. Journal of Alloys and Compounds2015619: 846–853 

[10]

Wang ZSun  YChen L . Electrochemical characterization of positive electrode material Li(Ni1/3Co1/3Mn1/3)O2 and compati-bility with electrolyte for lithium-ion batteries. Journal of the Electrochemical Society2004151(6): A914–A921

[11]

Yoon W SBalasubramanian  MYang X Q . Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge. Journal of the Electrochemical Society2004151(2): A246–A251

[12]

Myung S TLee  M HKomaba  S. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta200550(24): 4800–4806

[13]

Liu LJiao  LSun J . Electrochemical performance of LiV3−2xNixMnxO8 cathode materials synthesized by the sol–gel method. Solid State Ionics2008178(33–34): 1756–1761

[14]

Liu Z MHu  G RPeng  Z D. Synthesis and characterization of layered Li(Ni1/3Mn1/3Co1/3)O2 cathode materials by spray-drying method. Transactions of Nonferrous Metals Society of China200717(2): 291–295

[15]

Lu ZMacneil  D DDahn  J R. Layered cathode materials Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters20047(12): A503–A506

[16]

Macneil D DLu  Z HDahn  J R. Structure and electrochemistry of Li[NixCo1−2xMnx]O2 (0<x<1/2). Electrochemical and Solid-State Letters2002149(10): A1332–A1336

[17]

Cho T HShiosaki  YNoguchi H . Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. Journal of Power Sources2006159(2): 1322–1327

[18]

Gao JManthiram  A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. Journal of Power Sources2009191(2): 644–647

[19]

Gao YYakovleva  M VEbner  W B. Novel Li[Li0.2Mn0.54Ni0.13Co0.13]O2 compounds as cathode materials for safer lithium-ion batteries. Electrochemical Society19981(3): 117–119

[20]

Dahn J R. Structure and electrochemistry of LiyNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics199044(1–2): 87–97

[21]

Ohzuku TUeda  ANagayama M . Electrochemistry and structural chemistry of LiNiO2 (Rm) for 4 volt secondary lithium cells. Journal of the Electrochemical Society1993140(7): 1862–1870

[22]

Li WReimers  J NDahn  J RIn situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics199367(1–2): 123–130

[23]

Liu LZhang  NSun K . High rate performance of Li[Ni1/3 Co1/3Mn1/3]O2 synthesized via co-precipitation method by different precipitators. Journal of Physics and Chemistry of Solids200970(3–4): 727–731

[24]

Reimers J NDahn  J RGreedan  J E. Spin glass behavior in the frustrated antiferromagnetic LiNiO2. Journal of Solid State Chemistry1993102(2): 542–552

[25]

Zheng J MLi  JZhang Z R . The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics2008179(27–32): 1794–1799

[26]

Guo RShi  PCheng X . Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochimica Acta200954(24): 5796–5803

[27]

Manikandan PPeriasamy  P. Novel mixed hydroxy-carbonate precursor assisted synthetic technique for LiNi1/3Mn1/3Co1/3O2 cathode materials. Materials Research Bulletin201450: 132–140

[28]

Song DWang  XZhou E . Recovery and heat treatment of the LiNi1/3Co1/3Mn1/3O2 cathode scrap material for lithium ion battery. Journal of Power Sources2013232: 348–352

[29]

Sa QGratz  EHe M . Synthesis of high performance LiNi1/3 Co1/3Mn1/3O2 from lithium ion battery recovery stream. Journal of Power Sources2015282: 140–145

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (397KB)

1736

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/