Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

Wenlan WU , Junbo LI , Sheng ZOU , Jinwu GUO , Huiyun ZHOU

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (1) : 42 -50.

PDF (365KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (1) : 42 -50. DOI: 10.1007/s11706-017-0365-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

Author information +
History +
PDF (365KB)

Abstract

A method of in-situ reduction to prepare Au@Pt core–satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core–satellite NPs. The characterization of composite and core–satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size (~2 nm) dotted around Au core, and the resulting Au@Pt core–satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core–satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

Keywords

polymeric ionic liquid / gold nanoparticles / platinum nanoparticles / core--satellite

Cite this article

Download citation ▾
Wenlan WU, Junbo LI, Sheng ZOU, Jinwu GUO, Huiyun ZHOU. Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles. Front. Mater. Sci., 2017, 11(1): 42-50 DOI:10.1007/s11706-017-0365-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Höller R P M, Dulle M, Thomä S, . Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano, 2016, 10(6): 5740–5750

[2]

Rohani P, Sharma M K, Swihart M T. Core–satellite ZnS–Ag nanoassemblies: Synthesis, structure, and optical properties. Journal of Colloid and Interface Science, 2016, 463: 207–213

[3]

Rong Z, Xiao R, Wang C, . Plasmonic Ag core–satellite nanostructures with a tunable silica-spaced nanogap for surface-enhanced Raman scattering. Langmuir, 2015, 31(29): 8129–8137

[4]

Xiong W, Sikdar D, Yap L W, . Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7(8): 3445–3452

[5]

Rodríguez-Fernández D, Langer J, Henriksen-Lacey M, . Hybrid Au–SiO2 core–satellite colloids as switchable SERS tags. Chemistry of Materials, 2015, 27(7): 2540–2545

[6]

Waldeisen J R, Wang T, Ross B M, . Disassembly of a core–satellite nanoassembled substrate for colorimetric biomolecular detection. ACS Nano, 2011, 5(7): 5383–5389

[7]

Hu J, Dong Y, Rahman Z, . In situ preparation of core–satellites nanostructural magnetic-Au NPs composite for catalytic degradation of organic contaminants. Chemical Engineering Journal, 2014, 254: 514–523

[8]

Foroushani A, Zhang Y, Li D, . Tunnelling current recognition through core–satellite gold nanoparticles for ultrasensitive detection of copper ions. Chemical Communications, 2015, 51(14): 2921–2924

[9]

Chou L Y, Zagorovsky K, Chan W C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature Nanotechnology, 2014, 9(2): 148–155

[10]

Dey P, Zhu S, Thurecht K J, . Self assembly of plasmonic core–satellite nano assemblies mediated by hyper branched polymer linkers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(19): 2827–2837

[11]

Chu W, Zhang Y, Li D, . A biomimetic sensor for the detection of lead in water. Biosensors & Bioelectronics, 2015, 67: 621–624

[12]

Zhang L, Xu Y, Yao H, . Boronic acid functionalized core–satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chemistry, 2009, 15(39): 10158–10166

[13]

Zou F M, Ding Q Q, Tran V T, . Magnetically recyclable catalytic activity of spiky magneto-plasmonic nanoparticles. RSC Advances, 2015, 5(70): 56653–56657

[14]

Sun M, Xu L, Ma W, . Hierarchical plasmonic nanorods and upconversion core–satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Advanced Materials, 2016, 28(5): 898–904

[15]

Ge J, Zhang Q, Zhang T, . Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie International Edition, 2008, 47(46): 8924–8928

[16]

Heinrich T, Traulsen C H, Holzweber M, . Coupled molecular switching processes in ordered mono- and multilayers of stimulus-responsive rotaxanes on gold surfaces. Journal of the American Chemical Society, 2015, 137(13): 4382–4390

[17]

He X, Liu Z, Fan F, . Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis. Journal of Nanoparticle Research, 2015, 17(2): 74 (10 pages)

[18]

Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36(12): 1629–1648

[19]

Amajjahe S, Ritter H. Microwave-sensitive foamable poly(ionic liquids) bearing tert-butyl ester groups: influence of counterions on the ester pyrolysis. Macromolecular Rapid Communications, 2009, 30(2): 94–98

[20]

Li J B, Zhang S J, Liang J, . One-dimensional assembly of polymeric ionic liquid capped gold nanoparticles driven by electrostatic dipole interaction. RSC Advances, 2015, 5(11): 7994–8001

[21]

Li J B, Zhao J, Wu W, . Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles. Frontiers of Materials Science, 2016, 10(2): 178–186

[22]

Zhang J, Meng L, Zhao D, . Fabrication of dendritic gold nanoparticles by use of an ionic polymer template. Langmuir, 2008, 24(6): 2699–2704

[23]

Zhang H J, Li X, Chen G. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. Journal of Materials Chemistry, 2009, 19(43): 8223–8231

[24]

Anderson E B, Long T E. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 2010, 51(12): 2447–2454

[25]

Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36(12): 1629–1648

[26]

Khatri O P, Adachi K, Murase K, . Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects. Langmuir, 2008, 24(15): 7785–7792

[27]

Yuan J Y, Wunder S, Warmuth F, . Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer, 2012, 53(1): 43–49

[28]

Kameyama T, Ohno Y, Kurimoto T, . Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications. Physical Chemistry Chemical Physics, 2010, 12(8): 1804–1811

[29]

Shan C, Li F, Yuan F, . Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid. Nanotechnology, 2008, 19(28): 285601

[30]

Li J, Liang J, Wu W, . AuCl4-responsive self-assembly of ionic liquid block copolymers for obtaining composite gold nanoparticles and polymeric micelles with controlled morphologies. New Journal of Chemistry, 2014, 38(6): 2508–2513

[31]

Tian Y, Xia J, Zhang L, . Ionic liquid based polymeric liposomes: A stable and biocompatible soft platform for bioelectrochemistry. Bioelectrochemistry, 2016, 111: 41–48

[32]

Buaki M, Aprile C, Dhakshinamoorthy A, . Liposomes by polymerization of an imidazolium ionic liquid: use as microreactors for gold-catalyzed alcohol oxidation. Chemistry, 2009, 15(47): 13082–13089

[33]

Lee S, Cummins M D, Willing G A, . Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits. Journal of Materials Chemistry, 2009, 19(43): 8092–8101

[34]

Jones S T, Walsh-Korb Z, Barrow S J, . The importance of excess poly(N-isopropylacrylamide) for the aggregation of poly(N-isopropylacrylamide)-coated gold nanoparticles. ACS Nano, 2016, 10(3): 3158–3165

[35]

Gracia R, Vijayakrishna K, Mecerreyes D. Poly(ionic liquid)s with redox active counter-anions: All-in-one reactants and stabilizers for the synthesis of functional colloids. Reactive & Functional Polymers, 2014, 79: 54–58

[36]

Luo S, Xu J, Zhang Y, . Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking. The Journal of Physical Chemistry B, 2005, 109(47): 22159–22166

[37]

Ye Y S, Elabd Y A. Anion exchanged polymerized ionic liquids: High free volume single ion conductors. Polymer, 2011, 52(5): 1309–1317

[38]

Yu B, Zhou F, Wang C, . A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. European Polymer Journal, 2007, 43(6): 2699–2707

[39]

Glebov E M, Pozdnyakov I P, Plyusnin V F, . Primary reactions in the photochemistry of hexahalide complexes of platinum group metals: A mini review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 1–5

[40]

Kocak G, Bütün V. Synthesis and stabilization of Pt nanoparticles in core cross-linked micelles prepared from an amphiphilic diblock copolymer. Colloid & Polymer Science, 2015, 293(12): 3563–3572

[41]

Lu Y, Yuan J, Polzer F, . In situ growth of catalytic active Au–Pt bimetallic nanorods in thermoresponsive core–shell microgels. ACS Nano, 2010, 4(12): 7078–7086

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (365KB)

1187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/