A review on biodegradable materials for cardiovascular stent application

Li-Da HOU, Zhen LI, Yu PAN, MuhammadIqbal SABIR, Yu-Feng ZHENG, Li LI

PDF(343 KB)
PDF(343 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (3) : 238-259. DOI: 10.1007/s11706-016-0344-x
REVIEW ARTICLE
REVIEW ARTICLE

A review on biodegradable materials for cardiovascular stent application

Author information +
History +

Abstract

A stent is a medical device designed to serve as a temporary or permanent internal scaffold to maintain or increase the lumen of a body conduit. The researchers and engineers diverted to investigate biodegradable materials due to the limitation of metallic materials in stent application such as stent restenosis which requires prolonged anti platelet therapy, often result in smaller lumen after implantation and obstruct re-stenting treatments. Biomedical implants with temporary function for the vascular intervention are extensively studied in recent years. The rationale for biodegradable stent is to provide the support for the vessel in predicted period of time and then degrading into biocompatible constituent. The degradation of stent makes the re-stenting possible after several months and also ameliorates the vessel wall quality. The present article focuses on the biodegradable materials for the cardiovascular stent. The objective of this review is to describe the possible biodegradable materials for stent and their properties such as design criteria, degradation behavior, drawbacks and advantages with their recent clinical and preclinical trials.

Keywords

biodegradable materials / magnesium alloy / polymers / biodegradable stent / cardiovascular stent

Cite this article

Download citation ▾
Li-Da HOU, Zhen LI, Yu PAN, MuhammadIqbal SABIR, Yu-Feng ZHENG, Li LI. A review on biodegradable materials for cardiovascular stent application. Front. Mater. Sci., 2016, 10(3): 238‒259 https://doi.org/10.1007/s11706-016-0344-x

References

[1]
Arjomand H, Turi Z G, McCormick D, . Percutaneous coronary intervention: historical perspectives, current status, and future directions. American Heart Journal, 2003, 146(5): 787–796
[2]
Mueller R L, Sanborn T A. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. American Heart Journal, 1995, 129(1): 146–172
[3]
Boucher R A, Myler R K, Clark D A, . Coronary angiography and angioplasty. Catheterization and Cardiovascular Diagnosis, 1988, 14(4): 269–285
[4]
de la Cruz K I, Tsai P I, Cohn W E, . Revascularization treatment recommendations based on atherosclerotic disease distribution: coronary artery bypass grafting versus stenting. Current Atherosclerosis Reports, 2008, 10(5): 434–437
[5]
Mani G, Feldman M D, Patel D, . Coronary stents: a materials perspective. Biomaterials, 2007, 28(9): 1689–1710
[6]
Waksman R. Biodegradable stents: they do their job and disappear. The Journal of Invasive Cardiology, 2006, 18(2): 70–74
[7]
Bertrand O F, Sipehia R, Mongrain R, . Biocompatibility aspects of new stent technology. Journal of the American College of Cardiology, 1998, 32(3): 562–571
[8]
Roubin G S, Cannon A D, Agrawal S K, . Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation, 1992, 85(3): 916–927
[9]
Regar E, Sianos G, Serruys P W. Stent development and local drug delivery. British Medical Bulletin, 2001, 59(5): 227–248
[10]
Ashby D T, Dangas G, Mehran R, . Coronary artery stenting. Catheterization and Cardiovascular Interventions, 2002, 56(1): 83–102
[11]
Holzapfel G A, Sommer G, Gasser C T, . Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology- Heart and Circulatory Physiology, 2005, 289(5): H2048–H2058
[12]
Frohlich J, Dobiasova M, Lear S, . The role of risk factors in the development of atherosclerosis. Critical Reviews in Clinical Laboratory Sciences, 2001, 38(5): 401–440
[13]
Robaina S, Jayachandran B, He Y, . Platelet adhesion to simulated stented surfaces. Journal of Endovascular Therapy, 2003, 10(5): 978–986
[14]
Rogers C, Edelman E R. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, 1995, 91(12): 2995–3001
[15]
Farb A, Weber D K, Kolodgie F D, . Morphological predictors of restenosis after coronary stenting in humans. Circulation, 2002, 105(25): 2974–2980
[16]
Wentzel J J, Gijsen F J, Stergiopulos N, . Shear stress, vascular remodeling and neointimal formation. Journal of Biomechanics, 2003, 36(5): 681–688
[17]
Wentzel J J, Krams R, Schuurbiers J C, . Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation, 2001, 103(13): 1740–1745
[18]
Berry J L, Manoach E, Mekkaoui C, . Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. Journal of Vascular & Interventional Radiology, 2002, 13(1): 97–105
[19]
Glagov S, Zarins C K, Masawa N, . Mechanical functional role of non-atherosclerotic intimal thickening. Frontiers of Medical and Biological Engineering, 1993, 5(1): 37–43
[20]
Babapulle M N, Eisenberg M J. Coated stents for the prevention of restenosis: Part II. Circulation, 2002, 106(22): 2859–2866
[21]
Rebelo N, Perry M. Finite element analysis for the design of Nitinol medical devices. Minimally Invasive Therapy & Allied Technologies, 2009, 9(2): 75–80
[22]
Kastrati A, Dirschinger J, Boekstegers P, . Influence of stent design on 1-year outcome after coronary stent placement: a randomized comparison of five stent types in 1,147 unselected patients. Catheterization and Cardiovascular Interventions, 2000, 50(3): 290–297
[23]
Griffiths H, Peeters P, Verbist J, . Future devices: bioabsorbable stents. The British Journal of Cardiology, 2004, 11: AIC 80–AIC 84
[25]
Tominaga R, Kambic H E, Emoto H, . Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. American Heart Journal, 1992, 123(1): 21–28
[24]
Gurbel P A, Callahan K P, Malinin A I, . Could stent design affect platelet activation? Results of the Platelet Activation in STenting (PAST) study. The Journal of Invasive Cardiology, 2002, 14(10): 584–589
[26]
Leimgruber P P, Roubin G S, Anderson H V, . Influence of intimal dissection on restenosis after successful coronary angioplasty. Circulation, 1985, 72(3): 530–535
[27]
Fischman D L, Leon M B, Baim D S, . A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. New England Journal of Medicine, 1994, 331(8): 496–501
[28]
Nuutinen J P, Clerc C, Reinikainen R, . Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. Journal of Biomaterials Science: Polymer Edition, 2003, 14(3): 255–266
[29]
Morton A C, Crossman D, Gunn J. The influence of physical stent parameters upon restenosis. Pathologie Biologie, 2004, 52(4): 196–205
[30]
Lau K W, Johan A, Sigwart U, . A stent is not just a stent: Stent construction and design do matter in its clinical performance. Singapore Medical Journal, 2004, 45(7): 305–311
[31]
Rogers C D. Optimal stent design for drug delivery. Reviews in Cardiovascular Medicine, 2004, 5(Suppl 2): S9–S15
[32]
Bennett M R, O’Sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacology & Therapeutics, 2001, 91(2): 149–166
[33]
Tabata Y.Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 2009, 6(Suppl 3): S311–S324
[34]
Ramcharitar S, Serruys P W. Fully biodegradable coronary stents: progress to date. American Journal of Cardiovascular Drugs, 2008, 8(5): 305–314
[35]
Ormiston J A, Serruys P W, Regar E, . A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet, 2008, 371(9616): 899–907
[36]
Seiler H G, Sigel H, Sigel A. Handbook on toxicity of inorganic compounds. Analytica Chimica Acta, 1987, 237: 511
[37]
Garg S, Serruys P. Biodegradable stents and non-biodegradable stents. Minerva Cardioangiologica, 2009, 57(5): 537–565
[38]
Bourantas C V, Onuma Y, Farooq V, . Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications. International Journal of Cardiology, 2013, 167(1): 11–21
[39]
Heublein B, Rohde R, Kaese V, . Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, 89(6): 651–656
[40]
Wiebe J, Nef H M, Hamm C W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. Journal of the American College of Cardiology, 2014, 64(23): 2541–2551
[41]
Iqbal J, Onuma Y, Ormiston J, . Bioresorbable scaffolds: rationale, current status, challenges, and future. European Heart Journal, 2014, 35(12): 765–776
[42]
Wang Y, Zhang X. Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomaterials, 2014, 1(1): 49–55
[43]
Waksman R, Pakala R, Kuchulakanti P K, . Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619
[44]
Ako J, Bonneau H N, Honda Y, . Design criteria for the ideal drug-eluting stent. The American Journal of Cardiology, 2007, 100(8B): 3M–9M
[45]
Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116
[46]
Di Mario C, Griffiths H, Goktekin O, . Drug-eluting bioabsorbable magnesium stent. Journal of Interventional Cardiology, 2004, 17(6): 391–395
[47]
Ruiz-García J, Refoyo E, Cuesta-López E, . Comparative results between metal stent and bioresorbable scaffold at two years postimplantation. Revista Espanola de Cardiologia (English Edition), 2014, 67(1): 66–68
[48]
Echeverri D, Cabrales J R. Terapia de restauración vascular con plataformas biorreabsorbibles. La cuarta revolución. Revista Colombiana de Cardiología, 2014, 21(4): 231–240
[49]
Puppi D, Chiellini F, Piras A M, . Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35(4): 403–440
[50]
Williams D F. Biodegradation of surgical polymers. Journal of Materials Science, 1982, 17(5): 1233–1246
[51]
Helmus M N, Gibbons D F, Cebon D. Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicologic Pathology, 2008, 36(1): 70–80
[52]
Chen G, Ushida T, Tateishi T.Scaffold design for tissue engineering. Macromolecular Bioscience, 2002, 2(2): 67–77
[53]
Freier T. Biopolyesters in tissue engineering applications. Advances in Polymer Science, 2006, 203(1): 1–61
[54]
Sokolsky-Papkov M, Langer R, Domb A J. Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polymers for Advanced Technologies, 2011, 22(5): 502–511
[55]
Tamai H, Igaki K, Kyo E, . Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 2000, 102(4): 399–404
[56]
Ceonzo K, Gaynor A, Shaffer L, . Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Engineering, 2006, 12(2): 301–308
[57]
Brown D A, Lee E W, Loh C T, . A new wave in treatment of vascular occlusive disease: biodegradable stents – clinical experience and scientific principles. Journal of Vascular and Interventional Radiology, 2009, 20(3): 315–324
[58]
Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14): 6209–6219
[59]
Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44(21): 5713–5724
[60]
Pamula E, Menaszek E. In vitro and in vivo degradation of poly(L-lactide-co-glycolide) films and scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19(5): 2063–2070
[61]
Leenslag J W, Pennings A J, Bos R R, . Resorbable materials of poly(L-lactide): VII. In vivo and in vitro degradation. Biomaterials, 1987, 8(4): 311–314
[63]
Grabow N, Schlun M, Sternberg K, . Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. Journal of Biomechanical Engineering, 2005, 127(1): 25–31
[62]
Stack R S, Califf R M, Phillips H R, . Interventional cardiac catheterization at Duke Medical Center. American Journal of Cardiology, 1988, 62(10 Pt 2): 3F–24F
[64]
Venkatraman S, Boey F, Lao L L. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Progress in Polymer Science, 2008, 33(9): 853–874
[65]
Piao L, Deng M, Chen X, . Ring-opening polymerization of ε-caprolactone and L-lactide using organic amino calcium catalyst. Polymer, 2003, 44(8): 2331–2336
[66]
Bourantas C V, Zhang Y, Farooq V, . Bioresorbable scaffolds: current evidence and ongoing clinical trials. Current Cardiology Reports, 2012, 14(5): 626–634
[67]
Lepu Medical. NeoVas biodegradable scaffold ongoing clinical trials overview. [EB/OL], 2015, http://finance.qq.com/a/20151127/030523.htm
[68]
MicroPort®. Firesorb bioresorbable rapamycin target eluting coronary scaffold system completes first successful implantation in the first FIM clinical trial. [EB/OL], 2015, http://www.microportmedical.com/en/media.php?curr_page=news_details&id=339
[69]
Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials, 1991, 12(3): 292–304
[70]
Pitt C G, Gu Z W. Modification of the rates of chain cleavage of poly(ε-caprolactone) and related polyesters in the solid state. Journal of Controlled Release, 1987, 4(4): 283–292
[71]
Heller J. Development of poly(ortho esters): a historical overview. Biomaterials, 1990, 11(9): 659–665
[72]
van der Giessen W J, Lincoff A M, Schwartz R S, . Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 1996, 94(7): 1690–1697
[73]
Gao R, Shi R, Qiao S, . A novel polymeric local heparin delivery stent: Initial experimental study. Journal of the American College of Cardiology, 1996, 27(2): 85–86
[74]
Susawa T, Shiraki K, Shimizu Y. Biodegradable intracoronary stents in adult dogs. Journal of the American College of Cardiology, 1993, 21: 483A
[75]
Tsuji T, Tamai H, Igaki K, . Biodegradable stents as a platform to drug loading. International Journal of Cardiovascular Interventions, 2003, 5(1): 13–16
[76]
Zidar J, Lincoff A, Stack R.Biodegradable stents. Textbook of Interventional Cardiology, 1994, 2: 787–802
[77]
Ye Y W, Landau C, Meidell R S, . Improved bioresorbable microporous intravascular stents for gene therapy. ASAIO Journal, 1996, 42(5): M823–M827
[78]
Heller J, Barr J, Ng S Y, . Poly(ortho esters) – their development and some recent applications. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 121–128
[79]
Capancioni S, Schwach-Abdellaoui K, Kloeti W, . In vitro monitoring of poly (ortho ester) degradation by electron paramagnetic resonance imaging. Macromolecules, 2003, 36(16): 6135–6141
[80]
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2): 103–114
[81]
Hofmann D, Entrialgo-Castaño M, Kratz K, . Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials. Advanced Materials, 2009, 21(32–33): 3237–3245
[82]
Heller J. Poly (ortho esters). Berlin Heidelberg: Springer, 1993, 41–92
[83]
Heller J, Penhale D W, Fritzinger B K, . Controlled release of contraceptive steroids from biodegradable poly (ortho esters). Contraceptive Delivery Systems, 1983, 4(1): 43–53
[84]
Shih C, Higuchi T, Himmelstein K J. Drug delivery from catalysed erodible polymeric matrices of poly(ortho ester)s. Biomaterials, 1984, 5(4): 237–240
[85]
Baei M S, Najafpour G D, Younesi H, . Poly(3-hydroxybutyrate) synthesis by cupriavidus necator DSMZ 545 utilizing various carbon sources. World Applied Sciences Journal, 2009, (2): 157–161
[86]
Holland S J, Jolly A M, Yasin M, . Polymers for biodegradable medical devices: II. Hydroxybutyrate–hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials, 1987, 8(4): 289–295
[87]
Wang H T, Palmer H, Linhardt R J, . Degradation of poly(ester) microspheres. Biomaterials, 1990, 11(9): 679–685
[88]
Zhao K, Deng Y, Chen G Q. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochemical Engineering Journal, 2003, 16(2): 115–123
[89]
Gogolewski S, Jovanovic M, Perren S M, . Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 1993, 27(9): 1135–1148
[90]
Unverdorben M, Spielberger A, Schywalsky M, . A polyhydroxybutyrate biodegradable stent: preliminary experience in the rabbit. Cardiovascular and Interventional Radiology, 2002, 25(2): 127–132
[91]
Domb A J, Amselem S, Shah J, . Polyanhydrides: Synthesis and characterization. Berlin Heidelberg: Springer, 1993, 93–141
[92]
Lucas N, Bienaime C, Belloy C, . Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 2008, 73(4): 429–442
[93]
Davies M C, Shakesheff K M, Shard A G, . Surface analysis of biodegradable polymer blends of poly(sebacic anhydride) and poly(DL-lactic acid). Macromolecules, 1996, 29(6): 2205–2212
[94]
Uhrich K E, Gupta A, Thomas T T, . Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules, 1995, 28(7): 2184–2193
[95]
Chasin M, Domb A, Ron E, . Polyanhydrides as drug delivery systems. In: Chasin M, Langer R, eds. Biodegradable Polymers as Drug Delivery Systems. New York: Marcel Dekker, 1990, 45: 43–70
[96]
Laurencin C, Domb A, Morris C, . Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. Journal of Biomedical Materials Research, 1990, 24(11): 1463–1481
[97]
Jabara R.Poly-anhydride based on salicylic acid and adipic acid anhydride.Barcelona, Spain: EuroPCR, 2009
[98]
Wang S, Lu L, Yaszemski M J. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules, 2006, 7(6): 1976–1982
[99]
Shung A K, Timmer M D, Jo S, . Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Journal of Biomaterials Science: Polymer Edition, 2002, 13(1): 95–108
[100]
Fisher J P, Dean D, Mikos A G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 2002, 23(22): 4333–4343
[101]
Suggs L J, Krishnan R S, Garcia C A, . In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 1998, 42(2): 312–320
[102]
Herold D A, Keil K, Bruns D E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochemical Pharmacology, 1989, 38(1): 73–76
[103]
Gilding D K, Reed A M. Biodegradable polymers for use in surgery – poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1. Polymer, 1979, 20(12): 1454–1458
[104]
Mody P C, Wilkes G L, Wagener K B, . Structure–property relationships of a new series of segmented polyether–polyester copolymers. Journal of Applied Polymer Science, 1981, 26(9): 2853–2878
[105]
Pathak C P, Sawhney A S, Quinn C P, . Polyimide-polyethylene glycol block copolymers: synthesis, characterization, and initial evaluation as a biomaterial. Journal of Biomaterials Science: Polymer Edition, 1994, 6(4): 313–323
[106]
Zhu K J, Lin X, Yang S. Preparation and properties of D, L-lactide and ethylene oxide copolymer: A modifying biodegradable polymeric material. Journal of Polymer Science Part C: Polymer Letters, 1986, 24(7): 331–337
[107]
Sawhney A S, Pathak C P, Hubbell J A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules, 1993, 26(4): 581–587
[108]
Hill-West J L, Chowdhury S M, Slepian M J, . Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 5967–5971
[109]
Suggs L J, Shive M S, Garcia C A, . In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 1999, 46(1): 22–32
[110]
Kohn J, Langer R. Polymerization reactions involving the side chains of α-L-amino acids. Journal of the American Chemical Society, 1987, 109(3): 817–820
[111]
Ertel S I, Kohn J. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Journal of Biomedical Materials Research, 1994, 28(8): 919–930
[112]
Tangpasuthadol V, Pendharkar S M, Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds. Biomaterials, 2000, 21(23): 2371–2378
[113]
Tangpasuthadol V, Pendharkar S M, Peterson R C, . Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials, 2000, 21(23): 2379–2387
[114]
Pulapura S, Kohn J. Tyrosine-derived polycarbonates: backbone-modified “pseudo”-poly (amino acids) designed for biomedical applications. Biopolymers, 1992, 32(4): 411–417
[115]
Bourke S L, Kohn J, Dunn M G. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Engineering, 2004, 10(1–2): 43–52
[116]
Bailey L O, Becker M L, Stephens J S, . Cellular response to phase-separated blends of tyrosine-derived polycarbonates. Journal of Biomedical Materials Research Part A, 2006, 76(3): 491–502
[117]
Strandberg E, Zeltinger J, Schulz D G, . Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries. Circulation: Cardiovascular Interventions, 2012, 5(1): 39–46
[118]
Grube E. The REVA Tyrosine-derived polycarbonate bioabsorbable stent: final results from the RESORB First-in-man clinical trial and next generation designs. Transcatheter Cardiovascular Therapeutics, 2008
[119]
Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2015, 23(Supp l): S28–S40
[120]
Song G, Song S Z. A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007, 9(4): 298–302
[121]
Vormann J. Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003, 24(1–3): 27–37
[122]
Mult E, Haferkamp H, Niemeyer M, . Laser and electron beam welding of magnesium materials. Welding and Cutting, 2000, 52(8): 178–180
[123]
Marya M, Edwards G. The laser welding of magnesium alloy AZ91. Welding in the World, 2000, 44(2): 31–37
[124]
Mordike B, Ebert T. Magnesium: properties–applications–potential. Materials Science and Engineering A, 2001, 302(1): 37–45
[125]
Aghion E, Bronfin B. Magnesium alloys development towards the 21st century. Materials Science Forum, 2000, 350–351: 19–30
[126]
Pastor M, Zhao H, Debroy T. Continuous wave-Nd: yttrium–aluminum–garnet laser welding of AM60B magnesium alloy. Journal of Laser Applications, 2000, 12(3): 91–100
[127]
Marya M, Edwards G, Marya S, . Fundamentals in the fusion welding of magnesium and its alloys. Proceedings of the Seventh JWS International Symposium, Kobe, 2001, 597–602
[128]
Waksman R, Pakala R, Kuchulakanti P K, . Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619
[129]
Waksman R, Pakala R, Hellinga D, . Effect of bioabsorbable magnesium alloy stent on neointimal formation in a porcine coronary model. European Heart Journal, 2005, 26: 417
[130]
Waksman R, Pakala R, Okabe T, . Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. Journal of Interventional Cardiology, 2007, 20(5): 367–372
[131]
Friedrich H E, Mordike B L. Magnesium Technology. Berlin: Springer, 2006, 788
[132]
Erbel R, Di Mario C, Bartunek J, . Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369(9576): 1869–1875
[133]
Peeters P, Bosiers M, Verbist J, . Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. Journal of Endovascular Therapy, 2005, 12(1): 1–5
[134]
Schranz D, Zartner P, Michel-Behnke I, . Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheterization and Cardiovascular Interventions, 2006, 67(5): 671–673
[135]
Bach F W, Schaper M, Jaschik C. Influence of lithium on hcp magnesium alloys. Materials Science Forum, 2003, 419–422: 1037–1042
[136]
Kaese V, Niemeyer M, Tai P T, . Korrosionsschützendes Legieren von Magnesiumbasiswerkstoffen. Teil 1: Dynamische Alkalisierung der Grenzschicht-Tertiäre Legierungssysteme. Materials & Corrosion, 1999, 50(4): 191–198
[137]
Magnesium Elektron Datasheet. WE43. Magnesium Elektron, 2005
[138]
Günter N, Kohei K, Kenji H, . Magnesium-Based Alloys. Wiley-VCH Verlag GmbH & Co. KGaA, 2006
[139]
Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2003, 12(1): 35–39
[140]
Park J B, Bronzino J D. Biomaterials: Principles and Applications. CRC Press, 2003
[141]
Clark G C, Williams D F. The effects of proteins on metallic corrosion. Journal of Biomedical Materials Research, 1982, 16(2): 125–134
[142]
Waksman R, Pakala R, Kuchulakanti P K, . Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619
[143]
Waksman R, Pakala R, Okabe T, . Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. Journal of Interventional Cardiology, 2007, 20(5): 367–372
[144]
Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116
[145]
Zartner P, Cesnjevar R, Singer H, . First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheterization and Cardiovascular Interventions, 2005, 66(4): 590–594
[146]
Schranz D, Zartner P, Michel-Behnke I, . Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheterization and Cardiovascular Interventions, 2006, 67(5): 671–673
[147]
Zartner P, Buettner M, Singer H, . First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology. Catheterization and Cardiovascular Interventions, 2007, 69(3): 443–446
[148]
McMahon C J, Oslizlok P, Walsh K P. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries. Catheterization and Cardiovascular Interventions, 2007, 69(5): 735–738
[149]
Morice M C, Serruys P W, Sousa E J. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 2002, 346(23): 1773–1780
[150]
Se&Co B. CORRECTING & REPLACING BIOTRONIK announces positive 6-month results for dreams, the pioneering drug-eluting absorbable metal scaffold. Biomedical Market Newsletter, 5/17/2011, 257
[151]
Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 117(3): 285–297
[152]
May T, Mueller P P, Weich H, . Establishment of murine cell lines by constitutive and conditional immortalization. Journal of Biotechnology, 2005, 120(1): 99–110
[153]
Hermawan H, Alamdari H, Mantovani D, . Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 2008, 51(1): 38–45
[154]
Peuster M, Hesse C, Schloo T, . Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 2006, 27(28): 4955–4962
[155]
Moravej M, Prima F, Fiset M, . Electroformed iron as new biomaterial for degradable stents: development process and structure–properties relationship. Acta Biomaterialia, 2010, 6(5): 1726–1735
[156]
Zhu S, Huang N, Xu L, . Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2009, 203(10–11): 1523–1529
[157]
Liu B, Zheng Y F, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 2011, 65(3): 540–543
[158]
Nie F L, Zheng Y F, Wei S C, . In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomedical Materials, 2010, 5(6): 065015
[159]
Mueller P P, May T, Perz A, . Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 2006, 27(10): 2193–2200
[160]
Francis A, Yang Y, Virtanen S, . Iron and iron-based alloys for temporary cardiovascular applications. Journal of Materials Science: Materials in Medicine, 2015, 26(3): 138
[161]
Peuster M, Wohlsein P, Brügmann M, . A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart, 2001, 86(5): 563–569
[162]
Schinhammer M, Hänzi A C, Löffler J F, . Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, 2010, 6(5): 1705–1713
[163]
Hermawan H, Purnama A, Dube D, . Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomaterialia, 2010, 6(5): 1852–1860
[164]
Moravej M, Purnama A, Fiset M, . Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomaterialia, 2010, 6(5): 1843–1851
[165]
Liu B, Zheng Y F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 2011, 7(3): 1407–1420
[166]
Lin W J, Zhang D Y, Zhang G, . Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Materials & Design, 2015, 91: 72–79

Acknowledgements

This work was supported by the National Natural Science Fund for Young Scientists of China (Grant No. 51301049), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF201310024), the National Natural Science Foundation of China (Grant No. 81271676), and the National High Technology Research and Development Program of China (863 Program; Grant No. 2009AA03Z423).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(343 KB)

Accesses

Citations

Detail

Sections
Recommended

/