A review on biodegradable materials for cardiovascular stent application
Li-Da HOU, Zhen LI, Yu PAN, MuhammadIqbal SABIR, Yu-Feng ZHENG, Li LI
A review on biodegradable materials for cardiovascular stent application
A stent is a medical device designed to serve as a temporary or permanent internal scaffold to maintain or increase the lumen of a body conduit. The researchers and engineers diverted to investigate biodegradable materials due to the limitation of metallic materials in stent application such as stent restenosis which requires prolonged anti platelet therapy, often result in smaller lumen after implantation and obstruct re-stenting treatments. Biomedical implants with temporary function for the vascular intervention are extensively studied in recent years. The rationale for biodegradable stent is to provide the support for the vessel in predicted period of time and then degrading into biocompatible constituent. The degradation of stent makes the re-stenting possible after several months and also ameliorates the vessel wall quality. The present article focuses on the biodegradable materials for the cardiovascular stent. The objective of this review is to describe the possible biodegradable materials for stent and their properties such as design criteria, degradation behavior, drawbacks and advantages with their recent clinical and preclinical trials.
biodegradable materials / magnesium alloy / polymers / biodegradable stent / cardiovascular stent
[1] |
Arjomand H, Turi Z G, McCormick D,
|
[2] |
Mueller R L, Sanborn T A. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. American Heart Journal, 1995, 129(1): 146–172
|
[3] |
Boucher R A, Myler R K, Clark D A,
|
[4] |
de la Cruz K I, Tsai P I, Cohn W E,
|
[5] |
Mani G, Feldman M D, Patel D,
|
[6] |
Waksman R. Biodegradable stents: they do their job and disappear. The Journal of Invasive Cardiology, 2006, 18(2): 70–74
|
[7] |
Bertrand O F, Sipehia R, Mongrain R,
|
[8] |
Roubin G S, Cannon A D, Agrawal S K,
|
[9] |
Regar E, Sianos G, Serruys P W. Stent development and local drug delivery. British Medical Bulletin, 2001, 59(5): 227–248
|
[10] |
Ashby D T, Dangas G, Mehran R,
|
[11] |
Holzapfel G A, Sommer G, Gasser C T,
|
[12] |
Frohlich J, Dobiasova M, Lear S,
|
[13] |
Robaina S, Jayachandran B, He Y,
|
[14] |
Rogers C, Edelman E R. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, 1995, 91(12): 2995–3001
|
[15] |
Farb A, Weber D K, Kolodgie F D,
|
[16] |
Wentzel J J, Gijsen F J, Stergiopulos N,
|
[17] |
Wentzel J J, Krams R, Schuurbiers J C,
|
[18] |
Berry J L, Manoach E, Mekkaoui C,
|
[19] |
Glagov S, Zarins C K, Masawa N,
|
[20] |
Babapulle M N, Eisenberg M J. Coated stents for the prevention of restenosis: Part II. Circulation, 2002, 106(22): 2859–2866
|
[21] |
Rebelo N, Perry M. Finite element analysis for the design of Nitinol medical devices. Minimally Invasive Therapy & Allied Technologies, 2009, 9(2): 75–80
|
[22] |
Kastrati A, Dirschinger J, Boekstegers P,
|
[23] |
Griffiths H, Peeters P, Verbist J,
|
[25] |
Tominaga R, Kambic H E, Emoto H,
|
[24] |
Gurbel P A, Callahan K P, Malinin A I,
|
[26] |
Leimgruber P P, Roubin G S, Anderson H V,
|
[27] |
Fischman D L, Leon M B, Baim D S,
|
[28] |
Nuutinen J P, Clerc C, Reinikainen R,
|
[29] |
Morton A C, Crossman D, Gunn J. The influence of physical stent parameters upon restenosis. Pathologie Biologie, 2004, 52(4): 196–205
|
[30] |
Lau K W, Johan A, Sigwart U,
|
[31] |
Rogers C D. Optimal stent design for drug delivery. Reviews in Cardiovascular Medicine, 2004, 5(Suppl 2): S9–S15
|
[32] |
Bennett M R, O’Sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacology & Therapeutics, 2001, 91(2): 149–166
|
[33] |
Tabata Y.Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 2009, 6(Suppl 3): S311–S324
|
[34] |
Ramcharitar S, Serruys P W. Fully biodegradable coronary stents: progress to date. American Journal of Cardiovascular Drugs, 2008, 8(5): 305–314
|
[35] |
Ormiston J A, Serruys P W, Regar E,
|
[36] |
Seiler H G, Sigel H, Sigel A. Handbook on toxicity of inorganic compounds. Analytica Chimica Acta, 1987, 237: 511
|
[37] |
Garg S, Serruys P. Biodegradable stents and non-biodegradable stents. Minerva Cardioangiologica, 2009, 57(5): 537–565
|
[38] |
Bourantas C V, Onuma Y, Farooq V,
|
[39] |
Heublein B, Rohde R, Kaese V,
|
[40] |
Wiebe J, Nef H M, Hamm C W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. Journal of the American College of Cardiology, 2014, 64(23): 2541–2551
|
[41] |
Iqbal J, Onuma Y, Ormiston J,
|
[42] |
Wang Y, Zhang X. Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomaterials, 2014, 1(1): 49–55
|
[43] |
Waksman R, Pakala R, Kuchulakanti P K,
|
[44] |
Ako J, Bonneau H N, Honda Y,
|
[45] |
Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116
|
[46] |
Di Mario C, Griffiths H, Goktekin O,
|
[47] |
Ruiz-García J, Refoyo E, Cuesta-López E,
|
[48] |
Echeverri D, Cabrales J R. Terapia de restauración vascular con plataformas biorreabsorbibles. La cuarta revolución. Revista Colombiana de Cardiología, 2014, 21(4): 231–240
|
[49] |
Puppi D, Chiellini F, Piras A M,
|
[50] |
Williams D F. Biodegradation of surgical polymers. Journal of Materials Science, 1982, 17(5): 1233–1246
|
[51] |
Helmus M N, Gibbons D F, Cebon D. Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicologic Pathology, 2008, 36(1): 70–80
|
[52] |
Chen G, Ushida T, Tateishi T.Scaffold design for tissue engineering. Macromolecular Bioscience, 2002, 2(2): 67–77
|
[53] |
Freier T. Biopolyesters in tissue engineering applications. Advances in Polymer Science, 2006, 203(1): 1–61
|
[54] |
Sokolsky-Papkov M, Langer R, Domb A J. Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polymers for Advanced Technologies, 2011, 22(5): 502–511
|
[55] |
Tamai H, Igaki K, Kyo E,
|
[56] |
Ceonzo K, Gaynor A, Shaffer L,
|
[57] |
Brown D A, Lee E W, Loh C T,
|
[58] |
Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14): 6209–6219
|
[59] |
Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44(21): 5713–5724
|
[60] |
Pamula E, Menaszek E. In vitro and in vivo degradation of poly(L-lactide-co-glycolide) films and scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19(5): 2063–2070
|
[61] |
Leenslag J W, Pennings A J, Bos R R,
|
[63] |
Grabow N, Schlun M, Sternberg K,
|
[62] |
Stack R S, Califf R M, Phillips H R,
|
[64] |
Venkatraman S, Boey F, Lao L L. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Progress in Polymer Science, 2008, 33(9): 853–874
|
[65] |
Piao L, Deng M, Chen X,
|
[66] |
Bourantas C V, Zhang Y, Farooq V,
|
[67] |
Lepu Medical. NeoVas biodegradable scaffold ongoing clinical trials overview. [EB/OL], 2015, http://finance.qq.com/a/20151127/030523.htm
|
[68] |
MicroPort®. Firesorb bioresorbable rapamycin target eluting coronary scaffold system completes first successful implantation in the first FIM clinical trial. [EB/OL], 2015, http://www.microportmedical.com/en/media.php?curr_page=news_details&id=339
|
[69] |
Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials, 1991, 12(3): 292–304
|
[70] |
Pitt C G, Gu Z W. Modification of the rates of chain cleavage of poly(ε-caprolactone) and related polyesters in the solid state. Journal of Controlled Release, 1987, 4(4): 283–292
|
[71] |
Heller J. Development of poly(ortho esters): a historical overview. Biomaterials, 1990, 11(9): 659–665
|
[72] |
van der Giessen W J, Lincoff A M, Schwartz R S,
|
[73] |
Gao R, Shi R, Qiao S,
|
[74] |
Susawa T, Shiraki K, Shimizu Y. Biodegradable intracoronary stents in adult dogs. Journal of the American College of Cardiology, 1993, 21: 483A
|
[75] |
Tsuji T, Tamai H, Igaki K,
|
[76] |
Zidar J, Lincoff A, Stack R.Biodegradable stents. Textbook of Interventional Cardiology, 1994, 2: 787–802
|
[77] |
Ye Y W, Landau C, Meidell R S,
|
[78] |
Heller J, Barr J, Ng S Y,
|
[79] |
Capancioni S, Schwach-Abdellaoui K, Kloeti W,
|
[80] |
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2): 103–114
|
[81] |
Hofmann D, Entrialgo-Castaño M, Kratz K,
|
[82] |
Heller J. Poly (ortho esters). Berlin Heidelberg: Springer, 1993, 41–92
|
[83] |
Heller J, Penhale D W, Fritzinger B K,
|
[84] |
Shih C, Higuchi T, Himmelstein K J. Drug delivery from catalysed erodible polymeric matrices of poly(ortho ester)s. Biomaterials, 1984, 5(4): 237–240
|
[85] |
Baei M S, Najafpour G D, Younesi H,
|
[86] |
Holland S J, Jolly A M, Yasin M,
|
[87] |
Wang H T, Palmer H, Linhardt R J,
|
[88] |
Zhao K, Deng Y, Chen G Q. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochemical Engineering Journal, 2003, 16(2): 115–123
|
[89] |
Gogolewski S, Jovanovic M, Perren S M,
|
[90] |
Unverdorben M, Spielberger A, Schywalsky M,
|
[91] |
Domb A J, Amselem S, Shah J,
|
[92] |
Lucas N, Bienaime C, Belloy C,
|
[93] |
Davies M C, Shakesheff K M, Shard A G,
|
[94] |
Uhrich K E, Gupta A, Thomas T T,
|
[95] |
Chasin M, Domb A, Ron E,
|
[96] |
Laurencin C, Domb A, Morris C,
|
[97] |
Jabara R.Poly-anhydride based on salicylic acid and adipic acid anhydride.Barcelona, Spain: EuroPCR, 2009
|
[98] |
Wang S, Lu L, Yaszemski M J. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules, 2006, 7(6): 1976–1982
|
[99] |
Shung A K, Timmer M D, Jo S,
|
[100] |
Fisher J P, Dean D, Mikos A G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 2002, 23(22): 4333–4343
|
[101] |
Suggs L J, Krishnan R S, Garcia C A,
|
[102] |
Herold D A, Keil K, Bruns D E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochemical Pharmacology, 1989, 38(1): 73–76
|
[103] |
Gilding D K, Reed A M. Biodegradable polymers for use in surgery – poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1. Polymer, 1979, 20(12): 1454–1458
|
[104] |
Mody P C, Wilkes G L, Wagener K B,
|
[105] |
Pathak C P, Sawhney A S, Quinn C P,
|
[106] |
Zhu K J, Lin X, Yang S. Preparation and properties of D, L-lactide and ethylene oxide copolymer: A modifying biodegradable polymeric material. Journal of Polymer Science Part C: Polymer Letters, 1986, 24(7): 331–337
|
[107] |
Sawhney A S, Pathak C P, Hubbell J A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules, 1993, 26(4): 581–587
|
[108] |
Hill-West J L, Chowdhury S M, Slepian M J,
|
[109] |
Suggs L J, Shive M S, Garcia C A,
|
[110] |
Kohn J, Langer R. Polymerization reactions involving the side chains of α-L-amino acids. Journal of the American Chemical Society, 1987, 109(3): 817–820
|
[111] |
Ertel S I, Kohn J. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Journal of Biomedical Materials Research, 1994, 28(8): 919–930
|
[112] |
Tangpasuthadol V, Pendharkar S M, Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds. Biomaterials, 2000, 21(23): 2371–2378
|
[113] |
Tangpasuthadol V, Pendharkar S M, Peterson R C,
|
[114] |
Pulapura S, Kohn J. Tyrosine-derived polycarbonates: backbone-modified “pseudo”-poly (amino acids) designed for biomedical applications. Biopolymers, 1992, 32(4): 411–417
|
[115] |
Bourke S L, Kohn J, Dunn M G. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Engineering, 2004, 10(1–2): 43–52
|
[116] |
Bailey L O, Becker M L, Stephens J S,
|
[117] |
Strandberg E, Zeltinger J, Schulz D G,
|
[118] |
Grube E. The REVA Tyrosine-derived polycarbonate bioabsorbable stent: final results from the RESORB First-in-man clinical trial and next generation designs. Transcatheter Cardiovascular Therapeutics, 2008
|
[119] |
Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2015, 23(Supp l): S28–S40
|
[120] |
Song G, Song S Z. A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007, 9(4): 298–302
|
[121] |
Vormann J. Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003, 24(1–3): 27–37
|
[122] |
Mult E, Haferkamp H, Niemeyer M,
|
[123] |
Marya M, Edwards G. The laser welding of magnesium alloy AZ91. Welding in the World, 2000, 44(2): 31–37
|
[124] |
Mordike B, Ebert T. Magnesium: properties–applications–potential. Materials Science and Engineering A, 2001, 302(1): 37–45
|
[125] |
Aghion E, Bronfin B. Magnesium alloys development towards the 21st century. Materials Science Forum, 2000, 350–351: 19–30
|
[126] |
Pastor M, Zhao H, Debroy T. Continuous wave-Nd: yttrium–aluminum–garnet laser welding of AM60B magnesium alloy. Journal of Laser Applications, 2000, 12(3): 91–100
|
[127] |
Marya M, Edwards G, Marya S,
|
[128] |
Waksman R, Pakala R, Kuchulakanti P K,
|
[129] |
Waksman R, Pakala R, Hellinga D,
|
[130] |
Waksman R, Pakala R, Okabe T,
|
[131] |
Friedrich H E, Mordike B L. Magnesium Technology. Berlin: Springer, 2006, 788
|
[132] |
Erbel R, Di Mario C, Bartunek J,
|
[133] |
Peeters P, Bosiers M, Verbist J,
|
[134] |
Schranz D, Zartner P, Michel-Behnke I,
|
[135] |
Bach F W, Schaper M, Jaschik C. Influence of lithium on hcp magnesium alloys. Materials Science Forum, 2003, 419–422: 1037–1042
|
[136] |
Kaese V, Niemeyer M, Tai P T,
|
[137] |
Magnesium Elektron Datasheet. WE43. Magnesium Elektron, 2005
|
[138] |
Günter N, Kohei K, Kenji H,
|
[139] |
Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2003, 12(1): 35–39
|
[140] |
Park J B, Bronzino J D. Biomaterials: Principles and Applications. CRC Press, 2003
|
[141] |
Clark G C, Williams D F. The effects of proteins on metallic corrosion. Journal of Biomedical Materials Research, 1982, 16(2): 125–134
|
[142] |
Waksman R, Pakala R, Kuchulakanti P K,
|
[143] |
Waksman R, Pakala R, Okabe T,
|
[144] |
Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116
|
[145] |
Zartner P, Cesnjevar R, Singer H,
|
[146] |
Schranz D, Zartner P, Michel-Behnke I,
|
[147] |
Zartner P, Buettner M, Singer H,
|
[148] |
McMahon C J, Oslizlok P, Walsh K P. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries. Catheterization and Cardiovascular Interventions, 2007, 69(5): 735–738
|
[149] |
Morice M C, Serruys P W, Sousa E J. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 2002, 346(23): 1773–1780
|
[150] |
Se&Co B. CORRECTING & REPLACING BIOTRONIK announces positive 6-month results for dreams, the pioneering drug-eluting absorbable metal scaffold. Biomedical Market Newsletter, 5/17/2011, 257
|
[151] |
Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 117(3): 285–297
|
[152] |
May T, Mueller P P, Weich H,
|
[153] |
Hermawan H, Alamdari H, Mantovani D,
|
[154] |
Peuster M, Hesse C, Schloo T,
|
[155] |
Moravej M, Prima F, Fiset M,
|
[156] |
Zhu S, Huang N, Xu L,
|
[157] |
Liu B, Zheng Y F, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 2011, 65(3): 540–543
|
[158] |
Nie F L, Zheng Y F, Wei S C,
|
[159] |
Mueller P P, May T, Perz A,
|
[160] |
Francis A, Yang Y, Virtanen S,
|
[161] |
Peuster M, Wohlsein P, Brügmann M,
|
[162] |
Schinhammer M, Hänzi A C, Löffler J F,
|
[163] |
Hermawan H, Purnama A, Dube D,
|
[164] |
Moravej M, Purnama A, Fiset M,
|
[165] |
Liu B, Zheng Y F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 2011, 7(3): 1407–1420
|
[166] |
Lin W J, Zhang D Y, Zhang G,
|
/
〈 | 〉 |