The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning

Qilin WEI, Feiyang XU, Xingjian XU, Xue GENG, Lin YE, Aiying ZHANG, Zengguo FENG

PDF(672 KB)
PDF(672 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (2) : 113-121. DOI: 10.1007/s11706-016-0339-7
RESEARCH ARTICLE
RESEARCH ARTICLE

The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning

Author information +
History +

Abstract

The non-woven wound dressing with core–shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber’s core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag-NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber’s core–shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing’s clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing’s anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application.

Keywords

coaxial electrospinning / core–shell structure / multifunctional wound dressing / anti-bacteria / heal-promoting

Cite this article

Download citation ▾
Qilin WEI, Feiyang XU, Xingjian XU, Xue GENG, Lin YE, Aiying ZHANG, Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning. Front. Mater. Sci., 2016, 10(2): 113‒121 https://doi.org/10.1007/s11706-016-0339-7

References

[1]
Mogoşanu G D, Grumezescu A M. Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 2014, 463(2): 127–136
[2]
Boateng J S, Matthews K H, Stevens H N E, . Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 2008, 97(8): 2892–2923
[3]
Winter G D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 1962, 193(4812): 293–294
[4]
Zahedi P, Rezaeian I, Ranaei-Siadat S O, . A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 2010, 21: 77–95
[5]
Jiang H, Hu Y, Zhao P, . Modulation of protein release from biodegradable core‒shell structured fibers prepared by coaxial electrospinning. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006, 79B(1): 50–57
[6]
Shao W, He J, Sang F, . Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Materials Science and Engineering C, 2016, 58(C): 342–351
[7]
Agarwal S, Wendorff J H, Greiner A. Use of electrospinning technique for biomedical applications. Polymer, 2008, 49(26): 5603–5621
[8]
Liang D, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews, 2007, 59(14): 1392–1412
[9]
Wu H, Hu L, Rowell M W, . Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Letters, 2010, 10(10): 4242–4248
[10]
Sridhar R, Lakshminarayanan R, Madhaiyan K, . Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chemical Society Reviews, 2015, 44(3): 790–814
[11]
Wang R, Liu Y, Li B, . Electrospunnanofibrous membranes for high flux microfiltration. Journal of Membrane Science, 2012, 392‒393: 167–174
[12]
Martinez-Sanz M, Lopez-Rubio A, Villano M, . Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. Journal of Applied Polymer Science, 2016, 133(2): 42486
[13]
Li Z, Zhang H, Zheng W, . Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. Journal of the American Chemical Society, 2008, 130(15): 5036–5037
[14]
Holmes B, Fang X, Zarate A, . Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon, 2016, 97: 1–13
[15]
Sun Z, Zussman E, Yarin A L, . Compound core‒shell polymer nanofibers by Co-electrospinning. Advanced Materials, 2003, 15(22): 1929–1932
[16]
Hu X, Liu S, Zhou G, . Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 2014, 185(C): 12–21
[17]
Yarin A L. Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polymers for Advanced Technologies, 2011, 22(3): 310–317
[18]
Li H, Zhao C, Wang Z, . Controlled release of PDGF-bb by coaxial electrospun dextran/poly(L-lactide-co-ϵ-caprolactone) fibers with an ultrafine core/shell structure. Journal of Biomaterials Science. Polymer Edition, 2010, 21(6‒7): 803–819
[19]
Jia X, Zhao C, Li P, . Sustained release of VEGF by coaxial electrospun dextran/PLGA fibrous membranes in vascular tissue engineering. Journal of Biomaterials Science. Polymer Edition, 2011, 22(13): 1811–1827
[20]
Rho K S, Jeong L, Lee G, . Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006, 27(8): 1452–1461
[21]
Chattopadhyay S, Raines R T. Review collagen-based biomaterials for wound healing. Biopolymers, 2014, 101(8): 821–833
[22]
Han J, Lazarovici P, Pomerantz C, . Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules, 2011, 12(2): 399–408
[23]
Zeugolis D I, Khew S T, Yew E S Y, . Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin? Biomaterials, 2008, 29(15): 2293–2305
[24]
Abdelgawad A M, Hudson S M, Rojas O J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers, 2014, 100: 166–178
[25]
Wu J, Zheng Y, Song W, . In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate Polymers, 2014, 102(4): 762–771
[26]
Martins N C T, Freire C S R, Pinto R J B, . Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacteria paper products. Cellulose, 2012, 19(4): 1425–1436
[27]
Hartong D T, Berson E L, Dryja T P. Retinitis pigmentosa. Lancet, 2006, 368(9549): 1795–1809
[28]
Leonardi G R, Campos P M B G M. Influence of glycolic acid as a component of different formulations on skin penetration by vitamin A palmitate. Journal of Cosmetic Science, 1998, 49(1): 23–32
[29]
Sun B, Duan B, Yuan X. Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science, 2006, 102(1): 39–45
[30]
Liao I C, Chew S Y, Leong K W. Aligned core‒shell nanofibers delivering bioactive proteins. Nanomedicine, 2006, 1(4): 465–471
[31]
Catledge S A, Clem W C, Shrikishen N, . An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomedical Materials, 2007, 2(2): 142–150
[32]
Chang M C, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 2002, 23(24): 4811–4818
[33]
Pezeshki A, Ghanbarzadeh B, Mohammadi M, . Encapsulation of vitamin A palmitate in nanostructured lipid carrier (NLC)-effect of surfactant concentration on the formulation properties. Advanced Pharmaceutical Bulletin, 2014, 4(6): 563–568
[35]
Choi J S, Lee S J, Christ G J, . The influence of electrospun aligned poly(ϵ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials, 2008, 29(19): 2899–2906
[36]
Bedran-Russo A K B, Pereira P N R, Duarte W R, . Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 80B(1): 268–272
[37]
Gümüşderelioğlu M, Dalkıranoğlu S, Aydın R S T, . A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. Journal of Biomedical Materials Research Part A, 2011, 98A(3): 461–472
[38]
Nguyen T H, Kim Y H, Song H Y, . Nano Ag loaded PVA nano-fibrous mats for skin applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 96B(2): 225–233
[39]
Singh N, Khanna P K. In situ synthesis of silver nano-particles in polymethylmethacrylate. Materials Chemistry and Physics, 2007, 104(2‒3): 367–372
[40]
Duell E A, Kang S, Voorhees J J. Unoccluded retinol penetrates human skin in vivo more effectively than unoccluded retinyl palmitate or retinoic acid. The Journal of Investigative Dermatology, 1997, 109(3): 301–305

Acknowledgements

This project was financially supported by the College Students’ Innovative and the Entrepreneurial Training Program of Beijing (BJ15051) and College Students’ Innovative and the Entrepreneurial Training Program of Beijing Institute of Technology (No. 193, 2014‒2015).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(672 KB)

Accesses

Citations

Detail

Sections
Recommended

/