In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers

Jianchao ZHAN, Yosry MORSI, Hany EI-HAMSHARY, Salem S. AL-DEYAB, Xiumei MO

PDF(3586 KB)
PDF(3586 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 90-100. DOI: 10.1007/s11706-016-0329-9
RESEARCH ARTICLE
RESEARCH ARTICLE

In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers

Author information +
History +

Abstract

The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.

Keywords

nanofiber / electrospinning / gelatin / tissue engineering

Cite this article

Download citation ▾
Jianchao ZHAN, Yosry MORSI, Hany EI-HAMSHARY, Salem S. AL-DEYAB, Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Front. Mater. Sci., 2016, 10(1): 90‒100 https://doi.org/10.1007/s11706-016-0329-9

References

[1]
Matthews J A, Wnek G E, Simpson D G, . Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2): 232–238
[2]
Ma Z, Kotaki M, Inai R, . Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering, 2005, 11(1–2): 101–109
[3]
Sisson K, Zhang C, Farach-Carson M C, . Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Journal of Biomedical Materials Research Part A, 2010, 94A(4): 1312–1320
[4]
Zhang S, Huang Y, Yang X, . Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A, 2009, 90A(3): 671–679
[5]
Choi M O, Kim Y J. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization. International Journal of Biological Macromolecules, 2012, 50(5): 1188–1194
[6]
Baiguera S, Del Gaudio C, Lucatelli E, . Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials, 2014, 35(4): 1205–1214
[7]
Dhandayuthapani B, Krishnan U M, Sethuraman S.Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B, 2010, 94B(1): 264–272
[8]
Meng Z X, Xu X X, Zheng W, . Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011, 84(1): 97–102
[9]
Huang C H, Chi C Y, Chen Y S, . Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Materials Science and Engineering C, 2012, 32(8): 2476–2483
[10]
Chong E J, Phan T T, Lim I J, . Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 2007, 3(3): 321–330
[11]
Sisson K, Zhang C, Farach-Carson M C, . Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules, 2009, 10(7): 1675–1680
[12]
Gomes S R, Rodrigues G, Martins G G, . In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Materials Science and Engineering C, 2013, 33(3): 1219–1227
[13]
Panzavolta S, Gioffrè M, Focarete M L, . Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 2011, 7(4): 1702–1709
[14]
Juthamas R, Ratthapol R, Hathairat J, . Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International Journal of Biological Macromolecules, 2010, 47(4): 431–438
[15]
Chen Z, Wang L, Jiang H. The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication, 2012, 4(3): 035007
[16]
Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 2015, 33(6): 362–369
[17]
Jalaja K, Kumar P R A, Dey T, . Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications. Carbohydrate Polymers, 2014, 114: 467–475
[18]
Jalaja K, James N R. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules, 2015, 73: 270–278
[19]
Tang C, Saquing C D, Harding J R, . In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules, 2010, 43(2): 630–637
[20]
Cao M, Chen Z, Tu K, . Studies on one-step electrospinning for preparing crosslinked gelatin fibers. Acta Polymerica Sinica, 2009, 9(11): 1157–1161 (in Chinese)
[21]
Erencia M, Cano F, Tornero J A, . Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science, 2015, 132(25): 1–11
[22]
Zhu X, Cui W, Li X, . Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 2008, 9(7): 1795–1801
[23]
Mei L, Hu D, Ma J, . Preparation, characterization and evaluation of chitosan macroporous for potential application in skin tissue engineering. International Journal of Biological Macromolecules, 2012, 51(5): 992–997
[24]
Hoque M S, Benjakul S, Prodpran T. Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering, 2010, 96(1): 66–73
[25]
Chen X, Li W, Shao Z, . Separation of alcohol-water mixture by pervaporation through a novel natural polymer blend membrane-chitosan/silk fibroin blend membrane. Journal of Applied Polymer Science, 1999, 73(6): 975–980
[26]
Okuyama K. Revisiting the molecular structure of collagen. Connective Tissue Research, 2008, 49(5): 299–310
[27]
Chen Z, Wang L, Jiang H. The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication, 2012, 4(3): 035007
[28]
Amadori S, Torricelli P, Rubini K, . Effect of sterilization and crosslinking on gelatin films. Journal of Materials Science: Materials in Medicine, 2015, 26(2): 69–70
[29]
Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 2004, 25(25): 5675–5680
[30]
Ki C S, Baek D H, Gang K D, . Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005, 46(14): 5094–5102
[31]
Song J H, Kim H E, Kim H W. Production of electrospun gelatin nanofiber by water-based co-solvent approach. Journal of Materials Science: Materials in Medicine, 2008, 19(1): 95–102
[32]
Ren L, Wang J, Yang F Y, . Fabrication of gelatin–siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Materials Science and Engineering C, 2010, 30(3): 437–444
[33]
Usha R, Ramasami T. Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochimica Acta, 2000, 356(1–2): 59–66
[34]
de Carvalho R A, Grosso C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 2004, 18(5): 717–726
[35]
Zhang Y Z, Venugopal J, Huang Z M, . Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006, 47(8): 2911–2917
[36]
Bigi A, Cojazzi G, Panzavolta S, . Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001, 22(8): 763–768
[37]
Winter G D. Some factors affecting skin and wound healing. Journal of Tissue Viability, 2006, 16(2): 20–23
[38]
Winter G D, Scales J T. Effect of air drying and dressings on the surface of a wound. Nature, 1963, 197(4862): 91–92
[39]
Metzger S. Clinical and financial advantages of moist wound management. Home Healthcare Nurse, 2004, 22(9): 586–590

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 31470941 and 31271035), the Innovation Fund Designated for Graduate Students of Donghua University (Item No. CUSF-DH-D-2015032), Science and Technology Commission of Shanghai Municipality (15JC1490100, 15441905100), Ph.D. Programs Foundation of Ministry of Education of China (20130075110005) and light of textile project (J201404), Technology Bureau of Jiaxing City (MTC2012-006, 2011A Y1026), Science and Technology Agency of Zhejiang Province (2012R10012-09, 2010R50012-19). The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the research group project No. RGP-201.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3586 KB)

Accesses

Citations

Detail

Sections
Recommended

/