In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers

Jianchao ZHAN , Yosry MORSI , Hany EI-HAMSHARY , Salem S. AL-DEYAB , Xiumei MO

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 90 -100.

PDF (3586KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 90 -100. DOI: 10.1007/s11706-016-0329-9
RESEARCH ARTICLE
RESEARCH ARTICLE

In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers

Author information +
History +
PDF (3586KB)

Abstract

The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.

Keywords

nanofiber / electrospinning / gelatin / tissue engineering

Cite this article

Download citation ▾
Jianchao ZHAN, Yosry MORSI, Hany EI-HAMSHARY, Salem S. AL-DEYAB, Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Front. Mater. Sci., 2016, 10(1): 90-100 DOI:10.1007/s11706-016-0329-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Matthews J AWnek G ESimpson D G. Electrospinning of collagen nanofibers. Biomacromolecules20023(2): 232–238

[2]

Ma ZKotaki MInai R. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering200511(1–2): 101–109

[3]

Sisson KZhang CFarach-Carson M C. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Journal of Biomedical Materials Research Part A201094A(4): 1312–1320

[4]

Zhang SHuang YYang X. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A200990A(3): 671–679

[5]

Choi M OKim Y J. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization. International Journal of Biological Macromolecules201250(5): 1188–1194

[6]

Baiguera SDel Gaudio CLucatelli E. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials201435(4): 1205–1214

[7]

Dhandayuthapani BKrishnan U MSethuraman S.Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B201094B(1): 264–272

[8]

Meng Z XXu X XZheng W. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces201184(1): 97–102

[9]

Huang C HChi C YChen Y S. Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Materials Science and Engineering C201232(8): 2476–2483

[10]

Chong E JPhan T TLim I J. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia20073(3): 321–330

[11]

Sisson KZhang CFarach-Carson M C. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules200910(7): 1675–1680

[12]

Gomes S RRodrigues GMartins G G. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Materials Science and Engineering C201333(3): 1219–1227

[13]

Panzavolta SGioffrè MFocarete M L. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia20117(4): 1702–1709

[14]

Juthamas RRatthapol RHathairat J. Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International Journal of Biological Macromolecules201047(4): 431–438

[15]

Chen ZWang LJiang H. The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication20124(3): 035007

[16]

Reddy NReddy RJiang Q. Crosslinking biopolymers for biomedical applications. Trends in Biotechnology201533(6): 362–369

[17]

Jalaja KKumar P R ADey T. Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications. Carbohydrate Polymers2014114: 467–475

[18]

Jalaja KJames N R. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules201573: 270–278

[19]

Tang CSaquing C DHarding J R. In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules201043(2): 630–637

[20]

Cao MChen ZTu K. Studies on one-step electrospinning for preparing crosslinked gelatin fibers. Acta Polymerica Sinica20099(11): 1157–1161 (in Chinese)

[21]

Erencia MCano FTornero J A. Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science2015132(25): 1–11

[22]

Zhu XCui WLi X. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules20089(7): 1795–1801

[23]

Mei LHu DMa J. Preparation, characterization and evaluation of chitosan macroporous for potential application in skin tissue engineering. International Journal of Biological Macromolecules201251(5): 992–997

[24]

Hoque M SBenjakul SProdpran T. Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering201096(1): 66–73

[25]

Chen XLi WShao Z. Separation of alcohol-water mixture by pervaporation through a novel natural polymer blend membrane-chitosan/silk fibroin blend membrane. Journal of Applied Polymer Science199973(6): 975–980

[26]

Okuyama K. Revisiting the molecular structure of collagen. Connective Tissue Research200849(5): 299–310

[27]

Chen ZWang LJiang H. The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication20124(3): 035007

[28]

Amadori STorricelli PRubini K. Effect of sterilization and crosslinking on gelatin films. Journal of Materials Science: Materials in Medicine201526(2): 69–70

[29]

Bigi APanzavolta SRubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials200425(25): 5675–5680

[30]

Ki C SBaek D HGang K D. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer200546(14): 5094–5102

[31]

Song J HKim H EKim H W. Production of electrospun gelatin nanofiber by water-based co-solvent approach. Journal of Materials Science: Materials in Medicine200819(1): 95–102

[32]

Ren LWang JYang F Y. Fabrication of gelatin–siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Materials Science and Engineering C201030(3): 437–444

[33]

Usha RRamasami T. Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochimica Acta2000356(1–2): 59–66

[34]

de Carvalho R AGrosso C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids200418(5): 717–726

[35]

Zhang Y ZVenugopal JHuang Z M. Crosslinking of the electrospun gelatin nanofibers. Polymer200647(8): 2911–2917

[36]

Bigi ACojazzi GPanzavolta S. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials200122(8): 763–768

[37]

Winter G D. Some factors affecting skin and wound healing. Journal of Tissue Viability200616(2): 20–23

[38]

Winter G DScales J T. Effect of air drying and dressings on the surface of a wound. Nature1963197(4862): 91–92

[39]

Metzger S. Clinical and financial advantages of moist wound management. Home Healthcare Nurse200422(9): 586–590

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3586KB)

2086

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/