Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation

Xing-an JIANG, Xiang-ping JIANG, Chao CHEN, Na TU, Yun-jing CHEN, Ban-chao ZHANG

PDF(860 KB)
PDF(860 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 31-37. DOI: 10.1007/s11706-016-0328-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation

Author information +
History +

Abstract

Na0.5Bi4.5--xEuxTi4O15 (NBT--xEu3+) ceramics with x=0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT--0.25Eu3+ ceramics show the strongest red and orange emissions corresponding to the 5D07F2 (617 nm) and 5D07F1 (596 nm) transitions, respectively. The strongest excitation band around 465 nm matches well with the emission wavelength of commercial InGaN-based blue LED chip, indicating that Eu3+-doped NBT ceramics may be used as potential environmental friendly red-orange phosphor for W-LEDs application. As an inherent ferroelectric and piezoelectric material, the electrical properties of this potentially multifunctional electro-optical material have been also studied. The introduction of Eu3+ distinctly increased the Curie temperature (TC) of NBT--xEu3+ ceramics from 640°C to 711°C as x ranges from 0 to 0.40. For higher temperature applications, the electrical conductivity was also investigated. The conduction of charge carriers in high-temperature range originates from the conducting electrons from the ionization of oxygen vacancies. High TC and low tanδ makes Eu3+-doped NBT ceramic also suitable for high temperature piezoelectric sensor applications and electro-optical integration.

Keywords

Aurivillius bismuth layered structure / photoluminescence / electrical properties / multifunctional materials

Cite this article

Download citation ▾
Xing-an JIANG, Xiang-ping JIANG, Chao CHEN, Na TU, Yun-jing CHEN, Ban-chao ZHANG. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation. Front. Mater. Sci., 2016, 10(1): 31‒37 https://doi.org/10.1007/s11706-016-0328-x

References

[1]
Kreisel J, Alexe M, Thomas P A. A photoferroelectric material is more than the sum of its parts. Nature Materials, 2012, 11(4): 260
[2]
Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metallurgica et Materialia, 1995, 43(5): 2073–2084
[3]
Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. Science, 2005, 309(5733): 391–392
[4]
Lu H, Bark C W, Ojos D E, . Mechanical writing of ferroelectric polarization. Science, 2012, 336(6077): 59–61
[5]
Wang X S, Xu C N, Yamada H, . Elecro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics. Advanced Materials, 2005, 17(10): 1254–1258
[6]
Jaffe H, Berlincourt D A. Piezoelectric transducer materials. Proceedings of the IEEE, 1965, 53(10): 1372–1386
[7]
Aurivillius B. Mixed bismuth oxides with layer lattices. Arkiv för Kemi, 1949, 1: 463–480
[8]
Park B H, Kang B S, Bu S D, . Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682–684
[9]
Peng D F, Wang X S, Xu C N, . Bright upconversion emission, increased Tc, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric oxides. Journal of the American Ceramic Society, 2013, 96(1): 184–190
[10]
Bokolia R, Thakur O P, Rai V K, . Dielectric, ferroelectric and photoluminescence properties of Er3+-doped Bi4Ti3O12 ferroelectric ceramics. Ceramics International, 2015, 41(4): 6055–6066
[11]
Chen H Z, Yang B, Sun Y, . Investigation on upconversion photoluminescence of Bi3TiNbO9:Er3+:Yb3+ thin films. Journal of Luminescence, 2011, 131(12): 2574–2578
[12]
Ma Q, Zhou Y Y, Lu M K, . Synthesis and luminescence of pure and Eu3+-activated Aurivillius-type Bi3TiNbO9 nanophosphors. Materials Chemistry and Physics, 2009, 116(2–3): 315–318
[13]
Volanti D P, Rosa L V, Paris E C, . The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Optical Materials, 2009, 31(6): 995–999
[14]
Wei T, Zhao C Z, Zhou Q J, . Bright green upconversion emission and enhanced ferroelectric polarization in Sr1−1.5xErxBi2Nb2O9. Optical Materials, 2014, 36(7): 1209–1212
[15]
Li J L, Deng C Y, Cui R R. Photoluminescence properties of CaBi2Ta2O9:RE3+ (RE= Sm, Tb, and Tm) phosphors. Optics Communications, 2014, 326: 6–9
[16]
Cui R R, Deng C Y, Gong X Y, . Luminescent performance of rare earths doped CaBi2Ta2O9 phosphor. Journal of Rare Earths, 2013, 31(6): 546–550
[17]
Sailaja S, Reddy B S. Synthesis, structural and photoluminescence properties of RE3+ (RE= Pr, Tm): (MgCa)2Bi4Ti5O20 ceramics. Ferroelectrics (Letters Section), 2011, 38(4–6): 94–100
[18]
Sun H Q, Zhang Q W, Wang X S, . Bi0.5Na0.5TiO3:Eu3+: An intense blue converting red phosphor. Materials Letters, 2014, 131: 164–166
[19]
Francis L T, Rao P P, Thomas M, . New orange-red emitting phosphor La3NbO7:Eu3+ under blue excitation. Materials Letters, 2012, 81: 142–144
[20]
Wei T, Zhao C Z, Li C P, . Photoluminescence and ferroelectric properties in Eu-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectric ceramics. Journal of Alloys and Compounds, 2013, 577: 728–733
[21]
Chen D Q, Yu Y L, Huang P, . Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Materialia, 2010, 58(8): 3035–3041
[22]
Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln= Y, Gd). Solid State Communications, 2004, 131(1): 65–69
[23]
Chan T S, Kang C C, Liu R S, . Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. Journal of Combinatorial Chemistry, 2007, 9(3): 343–346
[24]
Kuo T W, Huang C H, Chen T M. Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED. Optics Express, 2010, 18(S2): A231–A236
[25]
Ruan K B, Wu C H, Zhou H, . Optical characteristics of Bi4−xEuxTi3O12 ferroelectric thin films on fused silica substrates. Journal of Electroceramics, 2012, 29(1): 37–41
[26]
Cui R R, Deng C Y, Gong X Y, . Luminescence properties of Eu3+ doped CaBi2Ta2O9 bismuth layered-structure ferroelectrics. Materials Research Bulletin, 2013, 48(10): 4301–4306
[27]
Villafuerte-Castrejón M E, Camacho-Alanís F, González F, . Luminescence and structural study of Bi4−xEuxTi3O12 solid solution. Journal of the European Ceramic Society, 2007, 27(2–3): 545–549
[28]
Ofelt G S. Intensities of crystal spectra of rare-earth ions. Journal of Chemical Physics, 1962, 37(3): 511
[29]
Shimakawa Y, Kubo Y, Nakagawa Y, . Crystal structure and ferroelectric properties of ABi2Ta2O9 (A= Ca, Sr, and Ba). Physical Review B: Condensed Matter and Materials Physics, 2000, 61(10): 6559–6564
[30]
Kennedy B J, Zhou Q D, Ismunandar, . Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A= Ca, Sr, Ba, Pb). Journal of Solid State Chemistry, 2008, 181(6): 1377–1386
[31]
Du H L, Shi X. Dielectric and piezoelectric properties of barium-modified Aurivillius-type Na0.5Bi4.5Ti4O15. Journal of Physics and Chemistry of Solids, 2011, 72(11): 1279–1283
[32]
Ang C, Yu Z, Cross L E. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(1): 228–236
[33]
Dash U, Sahoo S, Chaudhuri P, Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study. Journal of Advanced Ceramics, 2014, 3(2): 89–97
[34]
Rehman F, Li J B, Dou Y K, . Dielectric relaxations and electrical properties of Aurivillius Bi3.5La0.5Ti2Fe0.5Nb0.5O12 Ceramics. Journal of Alloys and compounds, 2016, 654: 315–320
[35]
Ehara S, Muramatsu K, Shimazu M, . Dielectric properties of Bi4Ti3O12 below the Curie temperature. Japanese Journal of Applied Physics, 1981, 20(5): 877–881
[36]
Zhou Z Y, Dong X L, Yan H X, . Doping effects on the electrical conductivity of bismuth layered Bi3TiNbO9-based ceramics. Journal of Applied Physics, 2006, 100(4): 044112
[37]
Shi K, Peng L, Li M J, . Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2−xWxO9 ceramics. Journal of Alloys and Compounds, 2015, 653: 168–174
[38]
Rafiq M A, Rafiq M N, Saravanan K V. Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceramics International, 2015, 41(9): 11436–11444

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51562014 and 51262009) and the Natural Science Foundation of Jiangxi, China (Grant Nos. 20133ACB20002 and 20142BAB216009), and partially sponsored by Colleges and Universities “Advanced Ceramics” Scientific and Technological Innovation Team of Jiangxi Province.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(860 KB)

Accesses

Citations

Detail

Sections
Recommended

/