Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

Rui GAO , Wen-jun GE , Shu MIAO , Tao ZHANG , Xian-ping WANG , Qian-feng FANG

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 73 -79.

PDF (1533KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 73 -79. DOI: 10.1007/s11706-016-0327-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

Author information +
History +
PDF (1533KB)

Abstract

The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30–40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

Keywords

electron beam selective melting / ODS-316L steel powder / hot rolling / microstructure / tensile strength

Cite this article

Download citation ▾
Rui GAO, Wen-jun GE, Shu MIAO, Tao ZHANG, Xian-ping WANG, Qian-feng FANG. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting. Front. Mater. Sci., 2016, 10(1): 73-79 DOI:10.1007/s11706-016-0327-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ishino S. History, progress, achievements and future prospect of research activities on fusion materials by Japanese university researchers. Journal of Nuclear Materials1996233–237: 1535–1540

[2]

Robertson CPanigrahi B KBalaji S. Particle stability in model ODS steel irradiated up to 100 dpa at 600°C: TEM and nano-indentation investigation. Journal of Nuclear Materials2012426(1–3): 240–246

[3]

Kim I SHunn J DHashimoto N. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection. Journal of Nuclear Materials2000280(3): 264–274

[4]

Dai LLiu Y CDong Z Z. Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing. Powder Technology2012217: 281–287

[5]

Alinger M JOdette G RHoelzer D T. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys. Acta Materialia200957(2): 392–406

[6]

Rahmanifard RFarhangi HNovinrooz A J. Optimization of mechanical alloying parameters in 12YWT ferritic steel nanocomposite. Materials Science and Engineering A2010527(26): 6853–6857

[7]

Yao WNiu XZhou L. Competition growth of α and β phases in Ti-50 at.%Al peritectic alloy during the rapid solidification by laser melting technique. Acta Metallurgica Sinica (English Letters)201326(5): 523–532

[8]

Murr L EGaytan S MCeylan A. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia201058(5): 1887–1894

[9]

Hrabe NQuinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM). Materials Science and Engineering A2013573: 271–277

[10]

Murr L EGaytan S MMedina F. Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting. Materials Science and Engineering A2010527(7–8): 1861–1868

[11]

Saresh NPillai M GMathew J. Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy. Journal of Materials Processing Technology2007192–193: 83–88

[12]

Luo Y YXi Z PZeng W D. Characteristics of high-temperature deformation behavior of Ti–45Al–2Cr–3Ta–0.5W alloy mater. Journal of Materials Engineering and Performance201423(10): 3577–3585

[13]

Lin XYue T M. Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy. Materials Science and Engineering A2005402(1–2): 294–306

[14]

Milberg JSigl M. Electron beam sintering of metal powder. Production Engineering20082(2): 117–122

[15]

Boegelein TDryepondt S NPandey A. Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting. Acta Materialia201587: 201–215

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1533KB)

1449

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/