One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

Ruiping LIU, Feng REN, Jinlin YANG, Weiming SU, Zhiming SUN, Lei ZHANG, Chang-an WANG

PDF(1270 KB)
PDF(1270 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 15-22. DOI: 10.1007/s11706-016-0323-2
RESEARCH ARTICLE
RESEARCH ARTICLE

One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

Author information +
History +

Abstract

Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

Keywords

titania / hybrid composite / hollow spheres / photocatalytic property

Cite this article

Download citation ▾
Ruiping LIU, Feng REN, Jinlin YANG, Weiming SU, Zhiming SUN, Lei ZHANG, Chang-an WANG. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity. Front. Mater. Sci., 2016, 10(1): 15‒22 https://doi.org/10.1007/s11706-016-0323-2

References

[1]
Joo J B, Zhang Q, Lee I, . Mesoporous anatase titania hollow nanostructures though silica-protected calcinations. Advanced Functional Materials, 2012, 22(1): 166–174
[2]
Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
[3]
Asahi R, Morikawa T, Ohwaki T, . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
[4]
Liu G, Wang L, Yang H G, . Titania-based photocatalysts − crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 2010, 20(5): 831–843
[5]
Klauson D, Portjanskaya E, Budarnaja O, . The synthesis of sulphur and boron-containing titania photocatalysts and the evaluation of their photocatalytic activity. Catalysis Communications, 2010, 11(8): 715–720
[6]
Lü X, Huang F, Mou X, . A general preparation strategy for hybrid TiO2 hierarchical spheres and their enhanced solar energy utilization efficiency. Advanced Materials, 2010, 22(33): 3719–3722
[7]
Wang C, Ao Y, Wang P, . Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. Journal of Hazardous Materials, 2010, 178(1–3): 517–521
[8]
Yu J, Zhang L, Cheng B, . Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. Journal of Physical Chemistry C, 2007, 111(28): 10582–10589
[9]
Syoufian A, Satriya O H, Nakashima K. Photocatalytic activity of titania hollow spheres: Photodecomposition of methylene blue as a target molecule. Catalysis Communications, 2007, 8(5): 755–759
[10]
Liu Y. Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Advances, 2014, 4(68): 36040–36045
[11]
Yu J, Liu S, Yu H. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. Journal of Catalysis, 2007, 249(1): 59–66
[12]
Liu C, Zhang D, Sun Y. Synthesis of hollow anatase spheres with enhanced optical performance. CrystEngComm, 2014, 16(36): 8421–8428
[13]
Zhao D, Peng T Y, Xiao J R, . Preparation, characterization and photocatalytic performance of Nd3+-doped titania nanoparticles with mesostructured. Materials Letters, 2007, 61(1): 105–110
[14]
Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earth titania nanocomposites. Journal of Molecular Catalysis A: Chemical, 2008, 287(1–2): 151–158
[15]
Wang C, Ao Y H, Wang P F, . Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Applied Surface Science, 2010, 257(1): 227–231
[16]
Zhao D, Peng T Y, Liu M, . Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructured. Microporous and Mesoporous Materials, 2008, 114(1–3): 166–174
[17]
Peng T Y, Zhao D, Song H B, . Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 2005, 238(1–2): 119–126
[18]
Zhang J L, Wu Y M, Xing M Y, . Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 2010, 3(6): 715–726
[19]
Shi J W, Chen J W, Cui H J, . One template approach to synthesize C-doped titania hollow spheres with high visible-light photocatalytic activity. Chemical Engineering Journal, 2012, 195–196: 226–232
[20]
Wu L, Yu J C, Fu X. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 2006, 244(1–2): 25–32
[21]
Zhang Y J, Yan W, Wu Y P, . Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition. Materials Letters, 2008, 62(23): 3846–3848
[22]
Bhatkhande D S, Pangarkar V G, Beenackers A A. Photocatalytic degradation for environmental applications − a review. Journal of Chemical Technology and Biotechnology, 2002, 77(1): 102–116
[23]
Reddy K M, Manorama S V, Reddy A R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78(1): 239–245
[24]
Stengl V, Bakardjieva S, Murafa N, . Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials, 2008, 110(2–3): 370–378
[25]
Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 2005, 101(3–4): 315–321
[26]
Bandara J, Hadapangoda C C, Jayasekera W G. TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation. Applied Catalysis B: Environmental, 2004, 50(2): 83–88

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (NSFC, Grant Nos. 51202117 and 51572145) and the Fundamental Research Funds for the Central Universities (Grant No. 2014QJ02). L.Z. would like to thank the Alaska NASA EPSCoR support (NNX13AB28A).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1270 KB)

Accesses

Citations

Detail

Sections
Recommended

/