Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films

Abhijeet OJHA, Manish THAKKER, Dinesh O. SHAH, Prachi THAREJA

PDF(2430 KB)
PDF(2430 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 1-7. DOI: 10.1007/s11706-016-0321-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films

Author information +
History +

Abstract

Superhydrophilic thin films of 21 nm sized non-spherical titania nanoparticles are fabricated from a colloidal suspension by fixed blade flow coating without UV illumination. At a blade angle of α = 36° and a gap of d= 300 μm, hierarchically structured films with increasing surface roughness along with microscopic voids are formed depending on the substrate velocity and the titania volume fraction. Increasing the roughness is shown to be concomitant to an increase in the hydrophilicity, eventually leading to superhydrophilicity or water contact angle less than 5°.

Keywords

superhydrophilicity / titania / flow coating / thin films

Cite this article

Download citation ▾
Abhijeet OJHA, Manish THAKKER, Dinesh O. SHAH, Prachi THAREJA. Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films. Front. Mater. Sci., 2016, 10(1): 1‒7 https://doi.org/10.1007/s11706-016-0321-4

References

[1]
Hoffmann M R, Martin S T, Choi W, . Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
[2]
Minabe T, Tryk D A, Sawunyama P, . TiO2-mediated photodegradation of liquid and solid organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137(1): 53–62
[3]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
[4]
Wang R, Hashimoto K, Fujishima A, . Light-induced amphiphilic surfaces. Nature, 1997, 388(6641): 431–432
[5]
Watanabe T, Nakajima A, Wang R, . Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351(1–2): 260–263
[6]
Wang L Q, Baer D R, Engelhard M H, . The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science, 1995, 344(3): 237–250
[7]
Wang R, Sakai N, Fujishima A, . Studies of surface wettability conversion on TiO2 single-crystal surfaces. The Journal of Physical Chemistry B, 1999, 103(12): 2188–2194
[8]
Nakajima A, Koizumi S, Watanabe T, . Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir, 2000, 16(17): 7048–7050
[9]
Sawunyama P, Jiang L, Fujishima A, . Photodecomposition of a Langmuir-Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. The Journal of Physical Chemistry B, 1997, 101(51): 11000–11003
[10]
Miyauchi M, Kieda N, Hishita S, . Reversible wettability control of TiO2 surface by light irradiation. Surface Science, 2002, 511(1–3): 401–407
[11]
Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angewandte Chemie International Edition, 2005, 44(32): 5115–5118
[12]
Wenzel R. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994
[13]
Cassie A, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 546–551
[14]
Bico J, Thiele U, Quere D. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1–3): 41–46
[15]
Bico J, Tordeux C, Quere D. Rough wetting. EPL (Europhysics Letters), 2001, 55(2): 214–220
[16]
Zorba V, Chen X, Mao S S. Superhydrophilic TiO2 surface without photocatalytic activation. Applied Physics Letters, 2010, 96(9): 093702 (3 pages)
[17]
Lee D, Rubner M F, Cohen R E. All-nanoparticle thin-film coatings. Nano Letters, 2006, 6(10): 2305–2312
[18]
Yu J, Zhao X, Zhao Q, . Preparation and characterization of super-hydrophilic porous TiO2 coating films. Materials Chemistry and Physics, 2001, 68(1–3): 253–259
[19]
Han J B, Wang X, Wang N, . Effect of plasma treatment on hydrophilic properties of TiO2 thin films. Surface and Coatings Technology, 2006, 200(16–17): 4876–4878
[20]
Sirghi L, Nakamura M, Hatanaka Y, . Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir, 2001, 17(26): 8199–8203
[21]
Weinstein S J, Ruschak K J. Coating flows. Annual Review of Fluid Mechanics, 2004, 36(1): 29–53
[22]
Mittal M, Niles R K, Furst E M. Flow-directed assembly of nanostructured thin films from suspensions of anisotropic titania particles. Nanoscale, 2010, 2(10): 2237–2243
[23]
Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1–21
[24]
Shirtcliffe N J, McHale G, Newton M I, . Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, (25): 3135–3137
[25]
Irie H, Ping T S, Shibata T, . Reversible control of wettability of a TiO2 surface by introducing surface roughness. Electrochemical and Solid-State Letters, 2005, 8(9): D23–D25

Acknowledgements

Prachi Thareja acknowledges funding from IIT Gandhinagar start-up research grant and Science and Engineering Research Board (SERB), DST, India. Manish Thakker acknowledges funding from IIT Gandhinagar Summer Research Internship Program (SRIP).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2430 KB)

Accesses

Citations

Detail

Sections
Recommended

/