Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films

Abhijeet OJHA , Manish THAKKER , Dinesh O. SHAH , Prachi THAREJA

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 1 -7.

PDF (2430KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 1 -7. DOI: 10.1007/s11706-016-0321-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films

Author information +
History +
PDF (2430KB)

Abstract

Superhydrophilic thin films of 21 nm sized non-spherical titania nanoparticles are fabricated from a colloidal suspension by fixed blade flow coating without UV illumination. At a blade angle of α = 36° and a gap of d= 300 μm, hierarchically structured films with increasing surface roughness along with microscopic voids are formed depending on the substrate velocity and the titania volume fraction. Increasing the roughness is shown to be concomitant to an increase in the hydrophilicity, eventually leading to superhydrophilicity or water contact angle less than 5°.

Keywords

superhydrophilicity / titania / flow coating / thin films

Cite this article

Download citation ▾
Abhijeet OJHA, Manish THAKKER, Dinesh O. SHAH, Prachi THAREJA. Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films. Front. Mater. Sci., 2016, 10(1): 1-7 DOI:10.1007/s11706-016-0321-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoffmann M RMartin S TChoi W. Environmental applications of semiconductor photocatalysis. Chemical Reviews199595(1): 69–96

[2]

Minabe TTryk D ASawunyama P. TiO2-mediated photodegradation of liquid and solid organic compounds. Journal of Photochemistry and Photobiology A: Chemistry2000137(1): 53–62

[3]

Fujishima AHonda K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972238(5358): 37–38

[4]

Wang RHashimoto KFujishima A. Light-induced amphiphilic surfaces. Nature1997388(6641): 431–432

[5]

Watanabe TNakajima AWang R. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films1999351(1–2): 260–263

[6]

Wang L QBaer D REngelhard M H. The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science1995344(3): 237–250

[7]

Wang RSakai NFujishima A. Studies of surface wettability conversion on TiO2 single-crystal surfaces. The Journal of Physical Chemistry B1999103(12): 2188–2194

[8]

Nakajima AKoizumi SWatanabe T. Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir200016(17): 7048–7050

[9]

Sawunyama PJiang LFujishima A. Photodecomposition of a Langmuir-Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. The Journal of Physical Chemistry B1997101(51): 11000–11003

[10]

Miyauchi MKieda NHishita S. Reversible wettability control of TiO2 surface by light irradiation. Surface Science2002511(1–3): 401–407

[11]

Feng XZhai JJiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angewandte Chemie International Edition200544(32): 5115–5118

[12]

Wenzel R. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry193628(8): 988–994

[13]

Cassie ABaxter S. Wettability of porous surfaces. Transactions of the Faraday Society194440: 546–551

[14]

Bico JThiele UQuere D. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects2002206(1–3): 41–46

[15]

Bico JTordeux CQuere D. Rough wetting. EPL (Europhysics Letters)200155(2): 214–220

[16]

Zorba VChen XMao S S. Superhydrophilic TiO2 surface without photocatalytic activation. Applied Physics Letters201096(9): 093702 (3 pages)

[17]

Lee DRubner M FCohen R E. All-nanoparticle thin-film coatings. Nano Letters20066(10): 2305–2312

[18]

Yu JZhao XZhao Q. Preparation and characterization of super-hydrophilic porous TiO2 coating films. Materials Chemistry and Physics200168(1–3): 253–259

[19]

Han J BWang XWang N. Effect of plasma treatment on hydrophilic properties of TiO2 thin films. Surface and Coatings Technology2006200(16–17): 4876–4878

[20]

Sirghi LNakamura MHatanaka Y. Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir200117(26): 8199–8203

[21]

Weinstein S JRuschak K J. Coating flows. Annual Review of Fluid Mechanics200436(1): 29–53

[22]

Mittal MNiles R KFurst E M. Flow-directed assembly of nanostructured thin films from suspensions of anisotropic titania particles. Nanoscale20102(10): 2237–2243

[23]

Fujishima ARao T NTryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews20001(1): 1–21

[24]

Shirtcliffe N JMcHale GNewton M I. Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications2005, (25): 3135–3137

[25]

Irie HPing T SShibata T. Reversible control of wettability of a TiO2 surface by introducing surface roughness. Electrochemical and Solid-State Letters20058(9): D23–D25

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2430KB)

1068

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/