Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater

Minh Thi TRAN, Thi Huyen Trang NGUYEN, Quoc Trung VU, Minh Vuong NGUYEN

PDF(1364 KB)
PDF(1364 KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 56-65. DOI: 10.1007/s11706-016-0320-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater

Author information +
History +

Abstract

The research results of poly(1-naphthylamine)/Fe3O4 (PNA/Fe3O4) nanocomposites synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. XRD patterns and TEM images showed that the Fe3O4 grain size varied from 13 to 20 nm. The results of Raman spectral analysis showed that PNA participated in part of the PNA/Fe3O4 composite samples. The grain size of PNA/Fe3O4 composite samples is about 25--30 nm measured by SEM. The results of vibrating sample magnetometer measurements at room temperature showed that the saturation magnetic moment of PNA/Fe3O4 samples decreased from 63.13 to 43.43 emu/g, while the PNA concentration increased from 5% to 15%. The nitrogen adsorption--desorption isotherm of samples at 77 K at a relative pressure P/P0 of about 1 was studied in order to investigate the surface and porous structure of nanoparticles by the BET method. Although the saturation magnetic moments of samples decreased with the polymer concentration increase, the arsenic adsorption capacity of the PNA/Fe3O4 sample with the PNA concentration of 5% is better than that of Fe3O4 in a solution with pH= 7. In the solution with pH>14, the arsenic adsorption of magnetic nanoparticles is insignificant.

Keywords

poly(1-naphthylamin)/Fe3O4 nanocomposite / magnetization / arsenic adsorption

Cite this article

Download citation ▾
Minh Thi TRAN, Thi Huyen Trang NGUYEN, Quoc Trung VU, Minh Vuong NGUYEN. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater. Front. Mater. Sci., 2016, 10(1): 56‒65 https://doi.org/10.1007/s11706-016-0320-5

References

[1]
Shah P, Sohma M, Kawaguchi K, . Growth conditions, structural and magnetic properties of M/Fe3O4/I (M= Al, Ag and I= Al2O3, MgO) multilayers. Journal of Magnetic and Materials, 2002, 247(1): 1–5
[2]
Liu J, Bin Y, Matsuo M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. Journal of Physical Chemistry C, 2012, 116(1): 134–143
[3]
Bertone J F, Cizeron J, Wahi R K, . Hydrothermal synthesis of quartz nanocrystal. Nano Letters, 2003, 3(5): 655–659
[4]
Rusanov A I. Surface thermodynamic revisited. Surface Science Reports, 2005, 58(5–8): 111–239
[5]
Gu H, Huang Y, Zhang X, . Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer, 2012, 53(3): 801–809
[6]
Khodabakhshi A, Amin M M, Mozaffari M. Synthesis of magnetic nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iranian Journal of Environmental Health Sciences & Engineering, 2011, 8(3): 189–200
[7]
Auffan M, Rose J, Proux O, . Enhanced adsorption of arsenic onto magnetic nanoparticles: As(III) as a probe of surface structure and heterogeneity. Langmuir, 2008, 24(7): 3215–3222
[8]
Zouboulis A I, Katsoyiannis I A. Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environment International, 2005, 31(2): 213–219
[9]
Chaudhary G R, Saharan P, Kumar A, . Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3240–3245
[10]
Liu R, Lu Y, Shen X, . Adsorption kinetics and isotherms of arsenic(V) from aqueous solution onto Ni0.5Zn0.5Fe2O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 2835–2841
[11]
Fang X B, Fang Z Q, Tsang P K E, . Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor. Applied Surface Science, 2014, 314: 655–662
[12]
Hao T, Yang C, Rao X, . Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr(VI). Applied Surface Science, 2014, 292: 174–180
[13]
Yang G, Tang L, Lei X, . Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Applied Surface Science, 2014, 292: 710–716
[14]
Chen Q, He Q, Lv M, . The vital role of PANI for the enhanced photocatalytic activity of magnetically recyclable N–K2Ti4O9/MnFe2O4/PANI composites. Applied Surface Science, 2014, 311: 230–238
[15]
Jiang Q L, Zheng S W, Hong R Y, . Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Applied Surface Science, 2014, 307: 24–233
[16]
Chen M J, Shen H, Li X, . Facile synthesis of oil-soluble Fe3O4 nanoparticles based on a phase transfer mechanism. Applied Surface Science, 2014, 307: 306–310
[17]
Babu C M, Palanisamy B, Sundaravel B, . A novel magnetic Fe3O4/SiO2 core–shell nanorods for the removal of arsenic. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 2517–2527
[18]
Chen L, Xin H, Fang Y, . Application of metal oxide heterostructures in arsenic removal from contaminated water. Journal of Nanomaterials, 2014, 793610 (10 pages)
[19]
Park J W, Jang A N, Song J H, . Electronic structure of Zn doped Fe3O4 thin films. Journal of Nanoscience and Nanotechnology, 2013, 13(3): 1895–1898
[20]
Li X, Zhang F, Ma C, . Green synthesis of uniform magnetite (Fe3O4) nanoparticles and micron cubes. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 2939–2942
[21]
Zapotoczny B, Dudek M R, Guskos N, . FMR study of the porous silicate glasses with Fe3O4 magnetic nanoparticles fillers. Journal of Nanomaterials, 2012, 341073 (7 pages)
[22]
Méndez-Rodríguez L, Zenteno-Savín T, Acosta-Vargas B, . Differences in arsenic, molybdenum, barium, and other physicochemical relationships in groundwater between sites with and without mining activities. Natural Science, 2013, 5(2): 238–243
[23]
Lin K S, Dehvari K, Liu Y J, . Synthesis and characterization of porous zero-valent iron nanoparticles for remediation of chromium-contaminated wastewater. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 2675–2681
[24]
Zaki H M, Al-Heniti S, Umar A, . Magnesium-zinc ferrite nanoparticles: effect of copper doping on the structural, electrical and magnetic properties. Journal of Nanoscience and Nanotechnology, 2013, 13(6): 4056–4065
[25]
Larumbe S, Gómez-Polo C, Pérez-Landazábal J I, . Ni doped Fe3O4 magnetic nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 2652–2660
[26]
Rathore D, Kurchania R, Pandey R K. Structural, magnetic and dielectric properties of Ni1−xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles synthesized by chemical co-precipitation method. Journal of Nanoscience and Nanotechnology, 2013, 13(3): 1812–1819
[27]
Liu X, Zhong Z, Tang Y, . Review on the synthesis and applications of Fe3O4 nanomaterials. Journal of Nanomaterials, 2013, 902538, (7 pages)
[28]
Abdallah H M, Moyo T. Evidence of superparamagnetism in Mg0.5Mn0.5Fe2O4 nanosized ferrite. Journal of Superconductivity and Novel Magnetism, 2015, 28(3): 955–960
[29]
Genç F, Turhan E, Kavas H, . Magnetic and microwave absorption properties of NixZn0.9−xMn0.1Fe2O4 prepared by boron addition. Journal of Superconductivity and Novel Magnetism, 2015, 28(3): 1047–1050
[30]
Uwamariya V, Petrusevski B, Slokar Y M, . Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents. Water, Air, and Soil Pollution, 2015, 226(6): 184
[31]
Fakour H, Pan Y F, Lin T F. Effect of humic acid on arsenic adsorption and pore. blockage on iron-based adsorbent. Water, Air, and Soil Pollution, 2015, 226(2): 14
[32]
Ameen S, Akhtar M S, Umar A, . Effective modified electrode of poly(1-naphthylamine) nanoglobules for ultra-high sensitive ethanol chemical sensor. Chemical Engineering Journal, 2013, 229: 267–275
[33]
Ameen S, Akhtar M S, Kim Y S, . Synthesis and characterization of novel poly(1-naphthylamine)/zinc oxide nanocomposites: Application in catalytic degradation of methylene blue dye. Colloid & Polymer Science, 2010, 288(16–17): 1633–1638
[34]
Webb P A, Orr C, Camp R W, . Analytical Methods in Fine Particle Technology. Norcross, GA, USA: Micromeritics Instrument Corporation, 1997, 60–62

Acknowledgements

This work was supported by the NAFOSTED Foundation, Code: 103.02-2013.49.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1364 KB)

Accesses

Citations

Detail

Sections
Recommended

/