Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature

Michael Tanner CAMERON , Jordan A. ROGERSON , Douglas A. BLOM , Albert D. DUKES III

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 8 -14.

PDF (787KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 8 -14. DOI: 10.1007/s11706-016-0319-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature

Author information +
History +
PDF (787KB)

Abstract

Controlling the morphology of semiconductor nanocrystals has typically relied on controlling the concentration and species of surface ligands utilized in synthesis. Specific shapes, such as branched structures are of particular interest as the light harvesting and charge separating layer in a photovoltaic device. In this work we quantify how changes in the reaction temperature affect the resulting morphology of the nanocrystals. The narrowness of the temperature range over which the morphological transition occurred provides guidance to the tolerances necessary in the synthesis of CdSe utilized in commercial devices on a large scale.

Keywords

CdSe / nanocrystals / morphology control / synthesis / electron microscopy

Cite this article

Download citation ▾
Michael Tanner CAMERON, Jordan A. ROGERSON, Douglas A. BLOM, Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature. Front. Mater. Sci., 2016, 10(1): 8-14 DOI:10.1007/s11706-016-0319-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-Sayed M A. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Accounts of Chemical Research200437(5): 326–333

[2]

Burda CChen XNarayanan R. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews2005105(4): 1025–1102

[3]

Meyns MIacono FPalencia C. Shape evolution of CdSe nanoparticles controlled by halogen compounds. Chemistry of Materials201426(5): 1813–1821

[4]

Li ZPeng X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. Journal of the American Chemical Society2011133(17): 6578–6586

[5]

Liu LZhuang ZXie T. Shape control of CdSe nanocrystals with zinc blende structure. Journal of the American Chemical Society2009131(45): 16423–16429

[6]

Dayal SReese M OFerguson A J. The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of poly(3-hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells. Advanced Functional Materials201020(16): 2629–2635

[7]

Wang WBanerjee SJia S. Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chemistry of Materials200719(10): 2573–2580

[8]

Cao XZhao CLan X. Rapid phosphine-free growth of diverse CdSe multipods via microwave irradiation route. Journal of Alloys and Compounds2009474(1–2): 61–67

[9]

Yu W WPeng X. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie International Edition200741(15): 2368–2371

[10]

Shiang J JKadavanich A VGrubbs R K. Symmetry of annealed wurtzite CdSe nanocrystals: Assignment to the C3v point group. The Journal of Physical Chemistry199599(48): 17417–17422

[11]

Rosenthal S JMcBride JPennycook S J. Synthesis, surface studies, composition and structural characterization of CdSe, core/shell, and biologically active nanocrystals. Surface Science Reports200762(4): 111–157

[12]

Manna LScher E CAlivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society2000122(51): 12700–12706

[13]

Young J AChemical laboratory information profile: Oleic acid. Journal of Chemical Education200279(1): 24

[14]

Du YZeng F. Solvothermal route to CdS nanocrystals. Journal of Experimental Nanoscience20138(7–8): 965–970

[15]

Yu W WQu LGuo W. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials200315(14): 2854–2860

[16]

Dukes A D 3rdSchreuder M ASammons J A. Pinned emission from ultrasmall cadmium selenide nanocrystals. The Journal of Chemical Physics2008129(12): 121102

[17]

Underwood D FKippeny TRosenthal S J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. The Journal of Physical Chemistry B2001105(2): 436–443

[18]

Pokrant SWhaley K B. Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: the role of organic ligands, surface reconstruction, and inorganic capping shells. The European Physical Journal D19996(2): 255–267

[19]

Jasieniak JMulvaney P. From Cd-rich to Se-rich — the manipulation  of  CdSe  nanocrystal surface  stoichiometry. Journal of the American Chemical Society2007129(10): 2841–2848

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (787KB)

958

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/