Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

Xianshuo CAO , Jun WANG , Min LIU , Yong CHEN , Yang CAO , Xiaolong YU

Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 405 -412.

PDF (762KB)
Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 405 -412. DOI: 10.1007/s11706-015-0317-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

Author information +
History +
PDF (762KB)

Abstract

A novel composite scaffold based on chitosan-collagen/organomontmo-rillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

Keywords

chitosan (CS) / collagen (COL) / montmorillonite (MMT) / sodium dodecyl sulfate (SDS)

Cite this article

Download citation ▾
Xianshuo CAO, Jun WANG, Min LIU, Yong CHEN, Yang CAO, Xiaolong YU. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering. Front. Mater. Sci., 2015, 9(4): 405-412 DOI:10.1007/s11706-015-0317-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Williams D FThe Williams Dictionary of Biomaterials. Liverpool, UK: University Press, 1999

[2]

Peter MGanesh NSelvamurugan N. Preparation and characterization of chitosan gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers201080(3): 687–694

[3]

Brandi JXimenes J CFerreira M. Gelcasting of alumina-chitosan beads. Ceramics International201237: 571–579

[4]

Jayakumar RMenon DManzoor K. Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydrate Polymers201082(2): 227–232

[5]

Dong YFeng S S. Poly (D,L-lactide-co-glycolide)/MMT nanoparticles for oral delivery of anticancer drugs release system. Applied Clay Science200736: 297–301

[6]

Zheng J PWang C ZWang X X. Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering. Reactive & Functional Polymers200767(9): 780–788

[7]

Gieseking J E. The mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals. Soil Science193947(1): 1–14

[8]

Kokubo TTakadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials200627(15): 2907–2915

[9]

Olad AAzhar F F. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan-gelatin/nanohydroxypatite-montmorillonite scaffold for bone tissue engineering. Ceramics International201440(7): 10061–10072

[10]

Zhang ZLiao LXia Z. Ultrasound-assisted preparation and characterization of anionic surfacant modified montmorillonites. Applied Clay Science201050(4): 576–581

[11]

Sahoo RSahoo SNayak P L. Synthesis and characterization of polycaprolactone-gelatin nanocomposites for control release antic-ancer drug paclitaxel. European Journal of Scientific Research201148: 527–537

[12]

Bin Ahmad MLim J JShameli K. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules201116(12): 7237–7248

[13]

Zhuang GZhang ZGuo J. A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Applied Clay Science2015104: 18–26

[14]

Poon LWilson L DHeadley J V. Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydrate Polymers2014109: 92–101

[15]

Freyman T MYannas I VGibson L J. Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science200146(3–4): 273–282

[16]

Lee J HPark T GPark H S. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials200324(16): 2773–2778

[17]

Marques A PReis R L. Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Materials Science and Engineering C200525(2): 215–229

[18]

Ehrlich HKrajewska BHanke T. Chitosan membrane as a template for hydroxyapatite crystal growth in a model dual membrane diffusion system. Journal of Membrane Science2006273(1–2): 124–128

[19]

Chesnutt B MYuan YBrahmandam N. Characterization of biomimetic calcium phosphate on phosphorylated chitosan films. Journal of Biomedical Materials Research Part A200782(2): 343–353

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (762KB)

1607

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/