Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents

Dai-Wei MA , Rong ZHU , Yi-Yu WANG , Zong-Rui ZHANG , Xin-Yu WANG

Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 397 -404.

PDF (350KB)
Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 397 -404. DOI: 10.1007/s11706-015-0316-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents

Author information +
History +
PDF (350KB)

Abstract

In this paper, polyurethane (PU) materials with different contents of hard segment (20%, 25%, 30%) were prepared based on hexamethylene diisocyanate and polycarbonate diols by solution polymerization. The obtained polycarbonate-urethane (PCU) elastomers were characterized by very good hydrophobic property and excellent resistance to hydrolysis. Hemolysis, recalification time and platelet-rich plasma adhesion were used to evaluate the blood compatibility of the materials. L929 cells cultured with leach liquor of these PU membranes were selected to perform the cytotoxicity experiments. The results indicate that the hemolysis rates of PU membranes are all less than 5%, which can meet the requirement of the national standards for biomaterials. However, compared with 20% and 30% groups, the recalification time of the sample containing 25% hard segment is longer, while the number of platelet adhesion is less. Additionally, cells cultured in the leach liquor of PU membranes with 25% hard segment proliferated relatively more thriving, meaning that this proportion of the material has the lowest cytotoxicity.

Keywords

polyurethane (PU) / hydrolytic stability / blood compatibility / cytotoxicity

Cite this article

Download citation ▾
Dai-Wei MA, Rong ZHU, Yi-Yu WANG, Zong-Rui ZHANG, Xin-Yu WANG. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents. Front. Mater. Sci., 2015, 9(4): 397-404 DOI:10.1007/s11706-015-0316-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen LHan DJiang L. On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids and Surfaces B: Biointerfaces201185(1): 2–7

[2]

Ratner B D. The catastrophe revisited: blood compatibility in the 21st Century. Biomaterials200728(34): 5144–5147

[3]

Gorbet M BSefton M V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials200425(26): 5681–5703

[4]

Mao CQiu YSang H. Various approaches to modify biomaterial surfaces for improving hemocompatibility. Advances in Colloid and Interface Science2004110(1−2): 5–17

[5]

Szycher MSiciliano A AReed A M. Polyurethane elastomers in medicine. Polymeric. Biomaterials. New York: Marcel Dekker, 1994, 233–244

[6]

Simmons AHyvarinen JOdell R A. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials200425(20): 4887–4900

[7]

Baumann HRichter AKlemm D. Concepts for preparation of novel regioselective modified cellulose derivatives sulfated, aminated, carboxylated and acetylated for hemocompatible ultrathing coatings on biomaterials. Macromolecular Chemistry and Physics2000201(15): 1950–1962

[8]

Bernacca G MGulbransen M JWilkinson R. In vitro blood compatibility of surface-modified polyurethanes. Biomaterials199819(13): 1151–1165

[9]

Jo H YJung W KKim S K. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctusProcess Biochemistry200843(2): 179–184

[10]

Laredo JXue LHusak V A. Silyl-heparin bonding improves the patency and in vivo thromboresistance of carbon-coated polytetrafluoroethylene vascular grafts. Journal of Vascular Surgery200439(5): 1059–1065

[11]

Sawada SIwasaki YNakabayashi N. Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers. Journal of Biomedical Materials Research Part A200679(3): 476–484

[12]

Jia R PZong A XHe X Y. Synthesis of newly fluorinated thermoplastic polyurethae elastomers and theirblood compatibility. Fibers and Polymers201516(2): 231–238

[13]

Yan XChen JYang J. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Applied Materials & Interfaces20102(9): 2521–2529

[14]

Fang HWei JYu Y. In vivo studies of endotoxin removal by lysine-cellulose adsorbents. Biomaterials200425(23): 5433–5440

[15]

Kuran WSobczak MListos T. New route to oligocarbonate diols suitable for the synthesis of polyurethane elastomers. Polymer200041(24): 8531–8541

[16]

Zhang JHu C P. Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. European Polymer Journal200844(11): 3708–3714

[17]

Sagnella SMai-Ngam K. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids and Surfaces B: Biointerfaces200542(2): 147–155

[18]

American Society for Testing and Materials. ASTM F 756-00, Standard Practices for Assessment of Haemolytic Properties of Materials, 2000

[19]

Xue JZhao WNie S. Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Carbohydrate Polymers201395(1): 64–71

[20]

Yuse KGuiffard BBelouadah R. Polymer nanocomposites for microactuation and magneto-electric transduction. Frontiers of Mechanical Engineering in China20094(3): 350–354

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (350KB)

1422

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/