Recent progress in injectable bone repair materials research
Zonggang CHEN, Xiuli ZHANG, Lingzhi KANG, Fei XU, Zhaoling WANG, Fu-Zhai CUI, Zhongwu GUO
Recent progress in injectable bone repair materials research
Minimally invasive injectable self-setting materials are useful for bone repairs and for bone tissue regeneration in situ. Due to the potential advantages of these materials, such as causing minimal tissue injury, nearly no influence on blood supply, easy operation and negligible postoperative pain, they have shown great promises and successes in clinical applications. It has been proposed that an ideal injectable bone repair material should have features similar to that of natural bones, in terms of both the microstructure and the composition, so that it not only provides adequate stimulus to facilitate cell adhesion, proliferation and differentiation but also offers a satisfactory biological environment for new bone to grow at the implantation site. This article reviews the properties and applications of injectable bone repair materials, including those that are based on natural and synthetic polymers, calcium phosphate, calcium phosphate/polymer composites and calcium sulfate, to orthopedics and bone tissue repairs, as well as the progress made in biomimetic fabrication of injectable bone repair materials.
bone repair material / polymer / calcium phosphate / calcium sulfate / biomimetic
[1] |
Hench L L, Polak J M. Third-generation biomedical materials. Science, 2002, 295(5557): 1014–1017
|
[2] |
Dreifke M B, Ebraheim N A, Jayasuriya A C. Investigation of potential injectable polymeric biomaterials for bone regeneration. Journal of Biomedical Materials Research Part A, 2013, 101(8): 2436–2447
|
[3] |
He Y, Gao J, Li X,
|
[4] |
Low K L, Tan S H, Zein S H S,
|
[5] |
Hile D D, Kowaleski M P, Doherty S A,
|
[6] |
Yang X, Gan Y, Gao X,
|
[7] |
Zhu X S, Zhang Z M, Mao H Q,
|
[8] |
Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering R: Reports, 2007, 57(1−6): 1–27
|
[9] |
Wang X M, Cui F Z, Ge J,
|
[10] |
Weiner S, Wagner H D. The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998, 28(1): 271–298
|
[11] |
Cui F Z, Wen H B, Su X W,
|
[12] |
Landis W J, Song M J, Leith A,
|
[13] |
Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters, 1986, 206(2): 262–266
|
[14] |
Sharifi S, Imani M, Mirzadeh H,
|
[15] |
Cruz D M, Ivirico J L, Gomes M M,
|
[16] |
Ma G, Yang D, Li Q,
|
[17] |
Abbah S A, Lu W W, Chan D,
|
[18] |
Lee J Y, Choo J E, Park H J,
|
[19] |
Bergman K, Engstrand T, Hilborn J,
|
[20] |
Boger A, Bohner M, Heini P,
|
[21] |
Lewandrowski K U, Gresser J D, Wise D L,
|
[22] |
Kim C W, Talac R, Lu L,
|
[23] |
Young A M, Ho S M. Drug release from injectable biodegradable polymeric adhesives for bone repair. Journal of Controlled Release, 2008, 127(2): 162–172
|
[24] |
Vertenten G, Vlaminck L, Gorski T,
|
[25] |
Page J M, Harmata A J, Guelcher S A. Design and development of reactive injectable and settable polymeric biomaterials. Journal of Biomedical Materials Research Part A, 2013, 101(12): 3630–3645
|
[26] |
Shin H, Quinten Ruhé P, Mikos A G,
|
[27] |
Guo X, Park H, Liu G,
|
[28] |
Kim S Y, Lee S C. Thermo-responsive injectable hydrogel system based on poly(N-isopropylacrylamide-co-vinylphosphonic acid). I. Biomineralization and protein delivery. Journal of Applied Polymer Science, 2009, 113(6): 3460–3469
|
[29] |
Lee K Y, Alsberg E, Mooney D J. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research, 2001, 56(2): 228–233
|
[30] |
Rimondini L, Nicoli-Aldini N, Fini M,
|
[31] |
Chen F, Mao T, Tao K,
|
[32] |
Burdick J A, Anseth K S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002, 23(22): 4315–4323
|
[33] |
Amouriq Y, Bourges X, Weiss P,
|
[34] |
Lewis G, Koole L H, van Hooy-Corstjens C S J. Influence of powder-to-liquid monomer ratio on properties of an injectable iodine-containing acrylic bone cement for vertebroplasty and balloon kyphoplasty. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 91(2): 537–544
|
[35] |
Hernández L, Parra J, Vázquez B,
|
[36] |
Carrodeguas R G, Lasa B V, Del Barrio J S R. Injectable acrylic bone cements for vertebroplasty with improved properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 68(1): 94–104
|
[37] |
Hernandez L, Muñoz M E, Goñi I,
|
[38] |
Webb J C J, Spencer R F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. Journal of Bone and Joint Surgery (British Volume), 2007, 89(7): 851–857
|
[39] |
Robinson Y, Tschöke S, Stahel P F,
|
[40] |
Kalteis T, Lüring C, Gugler G,
|
[41] |
Brown W E, Chow L C. A new calcium phosphate setting cement. Journal of Dental Research, 1983, 62(1): 672–679
|
[42] |
Gruninger S E S C, Chow L C, O'young A,
|
[43] |
Horstmann W G, Verheyen C C, Leemans R. An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury, 2003, 34(2): 141–144
|
[44] |
Stankewich C J, Swiontkowski M F, Tencer A F,
|
[45] |
Zimmermann R, Gabl M, Lutz M,
|
[46] |
Aral A, Yalçin S, Karabuda Z C,
|
[47] |
Sato I, Akizuki T, Oda S,
|
[48] |
Hesaraki S, Nemati R. Cephalexin-loaded injectable macroporous calcium phosphate bone cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89(2): 342–352
|
[49] |
Liu C, Shao H, Chen F,
|
[50] |
Hesaraki S, Zamanian A, Moztarzadeh F. The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties: acetic acid versus citric acid. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 86(1): 208–216
|
[51] |
Ryf C, Goldhahn S, Radziejowski M,
|
[52] |
Lerouxel E, Weiss P, Giumelli B,
|
[53] |
Laschke M W, Witt K, Pohlemann T,
|
[54] |
Wolff K D, Swaid S, Nolte D,
|
[55] |
Li J, Qiu Z Y, Zhou L,
|
[56] |
Otsuka M, Ohshita Y, Marunaka S,
|
[57] |
Otsuka M, Oshinbe A, Legeros R Z,
|
[58] |
Wu F, Su J, Wei J,
|
[59] |
Wang X, Ye J, Li X,
|
[60] |
del Valle S, Miño N, Muñoz F,
|
[61] |
Wang X, Ye J, Wang Y. Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomaterialia, 2007, 3(5): 757–763
|
[62] |
Zhao F, Lu W W, Luk K D K,
|
[63] |
Hu G, Xiao L, Fu H,
|
[64] |
Iooss P, Le Ray A M, Grimandi G,
|
[65] |
Rodríguez-Lorenzo L M, Fernández M, Parra J,
|
[66] |
Blouin S, Moreau M F, Weiss P,
|
[67] |
Weiss P, Layrolle P, Clergeau L P,
|
[68] |
Gauthier O, Goyenvalle E, Bouler J M,
|
[69] |
Chang C H, Liao T C, Hsu Y M,
|
[70] |
Peter S J, Kim P, Yasko A W,
|
[71] |
Habraken W J E M, de Jonge L T, Wolke J G C,
|
[72] |
Link D P, van den Dolder J, van den Beucken J J,
|
[73] |
Kai D, Li D, Zhu X,
|
[74] |
Chazono M, Tanaka T, Komaki H,
|
[75] |
Pek Y S, Kurisawa M, Gao S,
|
[76] |
Plachokova A, Link D, van den Dolder J,
|
[77] |
Moreau J L, Xu H H K. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials, 2009, 30(14): 2675–2682
|
[78] |
Liu H, Li H, Cheng W,
|
[79] |
Montufar E B, Traykova T, Gil C,
|
[80] |
Jayabalan M, Shalumon K T, Mitha M K. Injectable biomaterials for minimally invasive orthopedic treatments. Journal of Materials Science: Materials in Medicine, 2009, 20(6): 1379–1387
|
[81] |
Yang G J, Lin M, Zhang L,
|
[82] |
Peltier L F, Bickel E Y, Lillo R,
|
[83] |
Yu X W, Xie X H, Yu Z F,
|
[84] |
Clayer M. Injectable form of calcium sulphate as treatment of aneurysmal bone cysts. ANZ Journal of Surgery, 2008, 78(5): 366–370
|
[85] |
Yu B, Han K, Ma H,
|
[86] |
Vlad M D, del Valle L J, Poeata I,
|
[87] |
Herberg S, Siedler M, Pippig S,
|
[88] |
Song H Y, Esfakur Rahman A H, Lee B T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. Journal of Materials Science: Materials in Medicine, 2009, 20(4): 935–941
|
[89] |
Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials, 2003, 15(16): 3221–3226
|
[90] |
Liao S S, Cui F Z, Zhang W,
|
[91] |
Chen Z, Liu H, Liu X,
|
[92] |
Chen Z, Liu H, Liu X,
|
[93] |
Hu N M, Chen Z, Liu X,
|
[94] |
Chen Z, Liu H, Liu X,
|
[95] |
Lian X J, Liu H Y, Wang X M,
|
[96] |
Zalavras C G, Patzakis M J, Holtom P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clinical Orthopaedics and Related Research, 2004, 427: 86–93
|
[97] |
Jiang J L, Li Y F, Fang T L,
|
[98] |
Joosten U, Joist A, Frebel T,
|
[99] |
Cui X, Zhao C, Gu Y,
|
[100] |
Tsai Y F, Wu C C, Fan F Y,
|
/
〈 | 〉 |