The beginnings of plasmomechanics: towards plasmonic strain sensors

Thomas MAURER, Joseph MARAE-DJOUDA, Ugo CATALDI, Arthur GONTIER, Guillaume MONTAY, Yazid MADI, Benoît PANICAUD, Demetrio MACIAS, Pierre-Michel ADAM, Gaëtan LÉVÊQUE, Thomas BÜRGI, Roberto CAPUTO

PDF(1290 KB)
PDF(1290 KB)
Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (2) : 170-177. DOI: 10.1007/s11706-015-0290-z
RESEARCH ARTICLE
RESEARCH ARTICLE

The beginnings of plasmomechanics: towards plasmonic strain sensors

Author information +
History +

Abstract

This article exposes the beginnings of a new field which could be named as “plasmomechanics”. Plasmomechanics comes from the convergence between mechanics and plasmonics. Here we discuss a relatively recent topic whose technological aim is the development of plasmonic strain sensors. The idea is based on the ability to deduce Au nanoparticles (NPs) distance distributions from polarized optical extinction spectroscopy which could thus give access to material strains. Variations of interparticle distances distributions can indeed lead to variations of plasmonic coupling and thus to material color change as shown here experimentally and numerically for random Au NP assemblies deposited onto elastomer films.

Keywords

localized surface plasmon resonance (LSPR) / metallic nanoparticle / strain / composite material / elastomeric film

Cite this article

Download citation ▾
Thomas MAURER, Joseph MARAE-DJOUDA, Ugo CATALDI, Arthur GONTIER, Guillaume MONTAY, Yazid MADI, Benoît PANICAUD, Demetrio MACIAS, Pierre-Michel ADAM, Gaëtan LÉVÊQUE, Thomas BÜRGI, Roberto CAPUTO. The beginnings of plasmomechanics: towards plasmonic strain sensors. Front. Mater. Sci., 2015, 9(2): 170‒177 https://doi.org/10.1007/s11706-015-0290-z

References

[1]
Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society, 2002, 124(35): 10596–10604
[2]
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 1999, 54(1-2): 3–15
[3]
Liao H, Nehl C L, Hafner J H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 2006, 1(2): 201–208
[4]
Haes A J, Chang L, Klein W L, . Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 2005, 127(7): 2264–2271
[5]
Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346
[6]
Haruta M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletin, 2004, 37(1-2): 27–36
[7]
Sazonova V, Yaish Y, Ustünel H, . A tunable carbon nanotube electromechanical oscillator. Nature, 2004, 431(7006): 284–287
[8]
van der Zande A M, Barton R A, Alden J S, . Large-scale arrays of single-layer graphene resonators. Nano Letters, 2010, 10(12): 4869–4873
[9]
Gloppe A, Verlot P, Dupont-Ferrier E, . Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nature Nanotechnology, 2014, 9(11): 920–926
[10]
Clair A, Foucault M, Calonne O, . Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges. Acta Materialia, 2011, 59(8): 3116–3123
[11]
Marae-Djouda J, . Nanogauges gratings for strain mapping at the nanoscale. (submitted)
[12]
Correa-Duarte M A, Salgueiriño-Maceira V, Rinaldi A, . Optical strain detectors based on gold/elastomer nanoparticulated films. Gold Bulletin, 2007, 40(1): 6–14
[13]
Jain P K, Huang W, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Letters, 2007, 7(7): 2080–2088
[14]
Tabor C, Murali R, Mahmoud M, . On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. The Journal of Physical Chemistry A, 2009, 113(10): 1946–1953
[15]
Maurer T, . Strategies for self-organization of Au nanoparticles assisted by copolymer templates. In: Plasmonics: Metallic Nanostructures and Their Optical Properties XI. Proceedings of the SPIE Society, San Diego, 2013
[16]
Lamarre S S, Sarrazin A, Proust J, . Optical properties of Au colloids self-organized into rings via copolymer templates. Journal of Nanoparticle Research, 2013, 15(5): 1656
[17]
Sarrazin A, Gontier A, Plaud A, . Single step synthesis and organization of gold colloids assisted by copolymer templates. Nanotechnology, 2014, 25(22): 225603
[18]
Jiang C, Markutsya S, Tsukruk V V. Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly. Langmuir, 2004, 20(3): 882–890
[19]
Cataldi U, Caputo R, Kurylyak Y, . Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling. Journal of Materials Chemistry C, 2014, 2(37): 7927–7933
[20]
Romero I, Aizpurua J, Bryant G W, . Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14(21): 9988–9999
[21]
Xu Y L. Electromagnetic scattering by an aggregate of spheres: far field. Applied Optics, 1997, 36(36): 9496–9508

Acknowledgements

Financial support of NanoMat (www.nanomat.eu) by the “Ministère de l’enseignement supérieur et de la recherche”, the “Conseil régional Champagne-Ardenne”, the “Fonds Européen de Développement Régional (FEDER) fund”, COST Action MP1302 – NanoSpectroscopy and the “Conseil général de l’Aube” is acknowledged. T.M. thanks the DRRT (Délégation Régionale à la Recherche et à la Technologie) of Champagne-Ardenne, the Labex ACTION project (contract ANR-11-LABX-01-01) and the CNRS via the chaire “optical nanosensors” for financial support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1290 KB)

Accesses

Citations

Detail

Sections
Recommended

/