Semiconductor metal oxide compounds based gas sensors: A literature review

Sunil Jagannath PATIL, Arun Vithal PATIL, Chandrakant Govindrao DIGHAVKAR, Kashinath Shravan THAKARE, Ratan Yadav BORASE, Sachin Jayaram NANDRE, Nishad Gopal DESHPANDE, Rajendra Ramdas AHIRE

PDF(628 KB)
PDF(628 KB)
Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (1) : 14-37. DOI: 10.1007/s11706-015-0279-7
REVIEW ARTICLE
REVIEW ARTICLE

Semiconductor metal oxide compounds based gas sensors: A literature review

Author information +
History +

Abstract

This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

Keywords

gas sensor / semiconductor metal oxide (SMO) / sensitivity / air pollutant / gas response

Cite this article

Download citation ▾
Sunil Jagannath PATIL, Arun Vithal PATIL, Chandrakant Govindrao DIGHAVKAR, Kashinath Shravan THAKARE, Ratan Yadav BORASE, Sachin Jayaram NANDRE, Nishad Gopal DESHPANDE, Rajendra Ramdas AHIRE. Semiconductor metal oxide compounds based gas sensors: A literature review. Front. Mater. Sci., 2015, 9(1): 14‒37 https://doi.org/10.1007/s11706-015-0279-7

References

[1]
Kuwabara M, Ide T. CO gas sensitivity in porous semiconducting barium–titanate ceramics. American Ceramic Society Bulletin, 1987, 66(9): 1401–1405
[2]
Chiu C M, Chang Y H. The structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1-xNixO3-δ system. Materials Science and Engineering A, 1999, 266(1–2): 93–98
[3]
Patil D R. Everyman’s Science, 2011, XLVI(3): 155
[4]
Azad A M, Akbar S A, Mhaisalkar S G, . Solid-state gas sensors: a review. Journal of the Electrochemical Society, 1992, 139(12): 3690–3704
[5]
Moseley P T. Material and Mechanism in Semiconducting Gas Sensor, Sensor Technology, System and Application. IOP Publishing, 1990
[6]
Joseph B, Gopchandran K G, Manoj P K, . Optical and electrical properties of zinc oxide films prepared by spray pyrolysis. Bulletin of Materials Science, 1999, 22(5): 921–926
[7]
Dayan N J, Sainkar S R, Karekar R N, . Formulation and characterization of ZnO:Sb thick-film gas sensors. Thin Solid Films, 1998, 325(1–2): 254–258
[8]
Krishnan B, Nampoori V P N. Screen printed nanosized ZnO thick film. Bulletin of Materials Science, 2005, 28(3): 239–242
[9]
Licari J J, Enlow L R. Hybrid Microcircuit Technology Handbook. 2nd ed. Park Ridge, NJ, USA: Noyes Publications, 1998
[10]
Patil A V, Dighavkar C G, Borse R Y. NO2 gas sensing properties of screen printed ZnO thick films. Sensors & Transducers Journal, 2009, 101(2): 96–103
[11]
Moseley P T, Williams D E, Norris J O W, . Electrical conductivity and gas sensitivity of some transition metal tantalates. Sensors and Actuators, 1988, 14(1): 79–91
[12]
Moseley P T, Williams D E. A selective ammonia sensor. Sensors and Actuators B: Chemical, 1990, 1(1–6): 113–115
[13]
Moseley P T. Materials selection for semiconductor gas sensors. Sensors and Actuators B: Chemical, 1992, 6(1–3): 149–156
[14]
Matsuura S. New developments and applications of gas sensors in Japan. Sensors and Actuators B: Chemical, 1993, 13(1–3): 7–11
[15]
Bernasik A, Radecka M, Rekas M, . Electrical properties of Cr-doped and Nb-doped TiO2 thin films. Applied Surface Science, 1993, 65–66: 240–245
[16]
Tang H, Prasad K, Sanjines R, . TiO2 anatase thin films as gas sensors. Sensors and Actuators B: Chemical, 1995, 26(1–3): 71–75
[17]
Mizsei J. How can sensitive and selective semiconductor gas sensors be made? Sensors and Actuators B: Chemical, 1995, 23(2–3): 173–176
[18]
Ferroni M, Guidi V, Martinelli G, . Characterization of a nanosized TiO2 gas sensor. Nanostructured Materials, 1996, 7(7): 709–718
[19]
Lin H M, Keng C H, Tung C Y. Gas-sensing properties of nanocrystalline TiO2. Nanostructured Materials, 1997, 9(1–8): 747–750
[20]
Zakrzewska K, Radecka M, Rekas M. Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films. Thin Solid Films, 1997, 310(1–2): 161–166
[21]
Sharma R K, Bhatnagar M C, Sharma G L. Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor. Sensors and Actuators B: Chemical, 1997, 45(3): 209–215
[22]
Sharma R K, Bhatnagar M C. Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sensors and Actuators B: Chemical, 1999, 56(3): 215–219
[23]
Jayaraman V, Gnanasekar K I, Prabhu E, . Preparation and characterisation of Cr2-xTixO3<?A3B2 h=-0.2h?>+<?A3B2 h=-0.2h?>δ and its sensor properties. Sensors and Actuators B: Chemical, 1999, 55(2–3): 175–179
[24]
Carotta M C, Ferroni M, Gnani D, . Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sensors and Actuators B: Chemical, 1999, 58(1–3): 310–317
[25]
Yamada Y, Seno Y, Masuoka Y, . NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties. Sensors and Actuators B: Chemical, 2000, 66(1–3): 164–166
[26]
Ferroni M, Carotta M C, Guidi V, . Structural characterization of Nb–TiO2 nanosized thick-films for gas sensing application. Sensors and Actuators B: Chemical, 2000, 68(1–3): 140–145
[27]
Gao L, Li Q, Song Z, . Preparation of nano-scale titania thick film and its oxygen sensitivity. Sensors and Actuators B: Chemical, 2000, 71(3): 179–183
[28]
Rothschild A, Edelman F, Komem Y, . Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sensors and Actuators B: Chemical, 2000, 67(3): 282–289
[29]
Sberveglieri G, Comini E, Faglia G, . Titanium dioxide thin films prepared for alcohol microsensor applications. Sensors and Actuators B: Chemical, 2000, 66(1–3): 139–141
[30]
Wang Y D, Chen Z X, Li Y F, . Electrical and gas-sensing properties of WO3 semiconductor material. Solid-State Electronics, 2001, 45(5): 639–644
[31]
Savage N O, Akbar S A, Dutta P K. Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors and Actuators B: Chemical, 2001, 72(3): 239–248
[32]
Savage N O, Chwieroth B, Ginwalla A, . Composite n–p semiconducting titanium oxides as gas sensors. Sensors and Actuators B: Chemical, 2001, 79(1): 17–27
[33]
Jiao Z, Chen F, Su R, . Study on the characteristics of Ag doped CuO–BaTiO3 CO2 sensors. Sensors, 2002, 2(9): 366–373
[34]
Guidi V, Butturi M A, Carotta M C, . Gas sensing through thick film technology. Sensors and Actuators B: Chemical, 2002, 84(1): 72–77
[35]
Li Y, Wlodarski W, Galatsis K, . Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sensors and Actuators B: Chemical, 2002, 83(1–3): 160–163
[36]
Karunagaran B, Kumar R T R, Mangalaraj D, . Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Crystal Research and Technology, 2002, 37(12): 1285–1292
[37]
Arbiol J, Cerda J, Dezanneau G, . Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. Journal of Applied Physics, 2002, 92(2): 853–861
[38]
Ruiz A M, Sakai G, Cornet A, . Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensors and Actuators B: Chemical, 2003, 93(1–3): 509–518
[39]
Shaw G A, Parkin I P, Williams D E. Atmospheric pressure chemical vapour deposition of Cr2-xTixO3 (CTO) thin films (≤ 3 mμm) on to gas sensing substrates. Journal of Materials Chemistry, 2003, 13(12): 2957–2962
[40]
Fergus J W. Doping and defect association in oxides for use in oxygen sensors. Journal of Materials Science, 2003, 38(21): 4259–4270
[41]
Li W, Ni C, Lin H, . Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 2004, 96(11): 6663–6668
[42]
Baraton M I, Merhari L. Surface chemistry of TiO2 nanoparticles: influence on electrical and gas sensing properties. Journal of the European Ceramic Society, 2004, 24(6): 1399–1404
[43]
Tamaki J, Miyaji A, Makinodan J, . Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors. Sensors and Actuators B: Chemical, 2005, 108(1–2): 202–206
[44]
Obida M Z, Afify H H, Abou-Helal M O, . Egyptian Journal of Solids, 2005, 28(1): 35
[45]
San Andres E, Lique M T, Prado A D, . Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005, 23(6): 1523
[46]
Patil S A, Patil L A. Surface modified TTO thick film resistors for NH3 gas sensing. Sensors & Transducers Journal, 2006, 71(9): 721–728
[47]
Patil D R, Patil L A, Jain G H, . Surface activated ZnO thick film resistors for LPG gas sensing. Sensors & Transducers Journal, 2006, 74(12): 874–883
[48]
Kagata M, Abe Y. CARTS USA, 2006, 3
[49]
Jain G H, Patil L A. Gas sensing properties of Cu and Cr activated BST thick films. Bulletin of Materials Science, 2006, 29(4): 403–411
[50]
Chaudhari G N, Bambole D R, Bodade A B, . Characterization of nanosized TiO2 based H2S gas sensor. Journal of Materials Science, 2006, 41(15): 4860–4864
[51]
Wagh M S, Jain G H, Patil D R, . Modified zinc oxide thick film resistors as NH3 gas sensor. Sensors and Actuators B: Chemical, 2006, 115(1): 128–133
[52]
Viricelle J P, Pijolat C, Riviere B, . Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sensors and Actuators B: Chemical, 2006, 118(1–2): 263–268
[53]
Maso N, Beltran H, Cordoncillo E, . Synthesis and electrical properties of Nb-doped BaTiO3. Journal of Materials Chemistry, 2006, 16(30): 3114–3119
[54]
Khadayate R S, Sali J V, Patil P P. Acetone vapor sensing properties of screen printed WO3 thick films. Talanta, 2007, 72(3): 1077–1081
[55]
Khadayate R S, Waghulde R B, Wankhede M G, . Ethanol vapour sensing properties of screen printed WO3 thick films. Bulletin of Materials Science, 2007, 30(2): 129–133
[56]
Jain G H, Patil L A, Patil P P, . Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors. Bulletin of Materials Science, 2007, 30(1): 9–17
[57]
Al-Homoudi I A, Thakur J S, Naik R, . Anatase TiO2 films based CO gas sensor: Film thickness, substrate and temperature effects. Applied Surface Science, 2007, 253(21): 8607–8614
[58]
Alessandri I, Comini E, Bontempi E, . Cr-inserted TiO2 thin films for chemical gas sensors. Sensors and Actuators B: Chemical, 2007, 128(1): 312–319
[59]
Kadu A V, Gedam N N, Chaudhari G N. Detection of hydrogen sulphide gas sensor based nanostructured Ba2CrMoO6 thick films. Sensors & Transducers Journal, 2007, 85(11): 1728–1738
[60]
Fang X, Oh J T. Microstructure and electrical properties of Nb2O5 doped titanium dioxide. Materials Science and Engineering B, 2007, 136(1): 15–19
[61]
Sonawane N B, Patil D R, Patil L A. CuO-modified WO3 sensor for the detection of a ppm level H2S gas at room temperature. Sensors & Transducers Journal, 2008, 93(6): 82–91
[62]
Joshi A, Gangal S A, Padma N, . BARC Newsletters, 2008, 297: 236
[63]
Baviskar H M, Deo V V, Patil D R, . Study of room temperature H2S gas sensing behavior of CuO-modified BSST thick film resistors. Sensors & Transducers Journal, 2008, 92(5): 24–31
[64]
More A M, Gunjakar J L, Lokhande C D. Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 2008, 129(2): 671–677
[65]
Dighavkar C G, Patil A V, Borse R Y, . Effect of firing temperature on electrical and structural characteristics of screen printed TiO2 thick films. Optoelectronics and Advanced Materials – Rapid Communication, 2009, 3(10): 1013–1017
[66]
Patil A V, Dighavkar C G, Sonawane S K, . Effect of firing temperature on electrical and structural characteristics of screen printed ZnO thick films. Optoelectronics and Advanced Materials – Rapid Communication, 2009, 3(9): 879–883
[67]
Dighavkar C G, Patil A V, Patil S J, . Ammonia gas sensing performance of Cr2O3-loaded TiO2 thick film resistors. Solid State Science and Technology, 2009, 17(2): 197–207
[68]
Dighavkar C G, Patil A V, Patil S J, . Effect on H2S gas sensing performance of Nb2O5 addition to TiO2 thick films. Sensors & Transducers Journal, 2009, 109(10): 117–125
[69]
Patil A V, Dighavkar C G, Sonawane S K, . Formulation and characterization of Cr2O3 doped ZnO thick films as H2S gas sensor. Sensors & Transducers Journal, 2009, 108(9): 189–197
[70]
Kumar V, Srivastava S K, Jain K. Cobalt doped SnO2 thick film gas sensors: conductance and gas response characteristics for LPG and CNG gas. Sensors & Transducers Journal, 2009, 101(2): 60–72
[71]
Patil A V, Dighavkar C G, Borse R Y. NO2 gas sensing properties of screen printed ZnO thick films. Sensors & Transducers Journal, 2009, 101(2): 96–103
[72]
Dighavkar C G, Patil A V, Patil S J, . Invertis Journal of Science & Technology, 2010, 3(3): 184
[73]
Patil A V, Dighavkar C G, Sonawane S K, . Study of microstructural parameters of screen printed ZnO thick film sensors. Sensors & Transducers Journal, 2010, 117(6): 62–70
[74]
Khadayate R S, Patil P P. Invertis Journal of Science & Technology, 2010, 3(3): 194
[75]
Abadi M H S, Hamidon M N, Shaari A H, . Characterization of mixed xWO3(1-x)Y2O3 nanoparticle thick film for gas sensing application. Sensors, 2010, 10(5): 5074–5089
[76]
Khadayate R S, Patil P P. CO gas sensing properties of screen printed SnO2 thick films. Journal of Optoelectronics and Advanced Materials, 2010, 12(6): 1338–1342
[77]
Dighavkar C G, Patil A V, Patil S J, . Effect on ethanol gas sensing performance of cu addition to TiO2 thick films. Sensors & Transducers Journal, 2010, 116(5): 28–37
[78]
Dighavkar C, Patil A, Patil S, . Al-doped TiO2 thick film resistors as H2S gas sensor. Sensors & Transducers Journal, 2010, 9(Special Issue): 39–47
[79]
Gaikwad V B, Patil R L, Deore M K, . Gas sensing properties of pure and Cr activated WO3 thick film resistors. Sensors & Transducers Journal, 2010, 120(9): 38–52
[80]
Patil A V, Dighavkar C G, Sonawane S K, . Formulation and characterization of Cu doped ZnO thick films as LPG gas sensor. Sensors & Transducers Journal, 2010, 9(Special Issue): 11–20
[81]
Deore M K, Gaikwad V B, Pawar N K, . Preparation and study the electrical, structural and gas sensing properties of ZnO thick film resistor. Sensors & Transducers Journal, 2010, 119(8): 117–128
[82]
Patil G E, Kajale D D, Shinde S D, . Effect of annealing temperature on gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Sensors & Transducers Journal, 2010, 9(Special Issue): 96–108
[83]
Wang C, Yin L, Zhang L, . Metal oxide gas sensors: sensitivity and influencing factors. Sensors, 2010, 10(3): 2088–2106
[84]
Patil A V, Dighavkar C G, Sonawane S K, . Influence of Nb2O5 doping on ZnO thick film gas sensors. Journal of Optoelectronics and Advanced Materials, 2010, 12(6): 1255–1261
[85]
Chaudhari R M, Gaikwad V B, Hire P D, . Studies of gas sensing performance of barium zirconate (BaZrO3). Sensors & Transducers Journal, 2011, 127(4): 76–87
[86]
Chavan D N, Gaikwad V B, Patil G E, . CdO doped indium oxide thick film as a low temperature H2S gas sensor. Sensors & Transducers Journal, 2011, 129(6): 122–134
[87]
Shelke P N, Jadkar S R, Khollam Y B, . Journal of Nano- and Electronic Physics, 2011, 3(1): 859
[88]
Rao M C, Hussain O M. Research Journal of Chemical Sciences, 2011, 1(7): 76
[89]
Ahire D V, Shinde S D, Patil G E, . Preparation of MoO3 thin films by spray pyrolysis and ITS gas sensing performance. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(3): 592–605
[90]
Deshmukh S B, Bari R H, Patil G E, . Preparation and characterization of zirconia based thick film resistor as an ammonia gas sensor. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(3): 540–558
[91]
Dunnill C W, Noimark S, Parkin I P. Silver loaded WO3-x/TiO2 composite multifunctional thin films. Thin Solid Films, 2012, 520(17): 5516–5520
[92]
Pawar N K, Kajale D D, Patil G E, . Nanostructured Fe2O3 thick film as an ethanol sensor. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(2): 441–457
[93]
Iftimie N, Crisan M, Braileanu A, . On the sensing gas properties of titanium dioxide films. Journal of Optoelectronics and Advanced Materials, 2008, 10(9): 2363–2366
[94]
Sahay P P, Nath R K. Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors. Sensors and Actuators B: Chemical, 2008, 133(1): 222–227
[95]
Satyanarayana L, Reddy K M, Manorama S V. Synthesis of nanocrystalline Ni1-xCoxMnxFe2-xO4: a material for liquefied petroleum gas sensing. Sensors and Actuators B: Chemical, 2003, 89(1–2): 62–67
[96]
Patil D R, Patil L A. Cr2O3-modified ZnO thick film resistors as LPG sensors. Talanta, 2009, 77(4): 1409–1414
[97]
Chaudhari G N. LPG-sensing properties of perovskite BiFe0.6Mn0.4O3 nanomaterials. Journal of Optoelectronics and Advanced Materials, 2007, 9(7): 2270–2274
[98]
Mitra P, Mondal S. Hydrogen and LPG sensing properties of SnO2 films obtained by direct oxidation of SILAR deposited SnS. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2008, 56(3): 295–300
[99]
Garje A D, Aiyer R C. Effect of decomposition temperature on electrical and gas sensing properties of nano SnO2 based thick film resistors. Sensors Letters, 2006, 4(4): 380–387
[100]
Jain K, Pant R P, Lakshmikumar S T. Effect of Ni doping on thick film SnO2 gas sensor. Sensors and Actuators B: Chemical, 2006, 113(2): 823–829
[101]
Srivastava A, Jain K, Rashmi, . Study of structural and microstructural properties of SnO2 powder for LPG and CNG gas sensors. Materials Chemistry and Physics, 2006, 97(1): 85–90
[102]
Shrivastava A, Rashmi, Jain K. Study on ZnO-doped tin oxide thick film gas sensors. Materials Chemistry and Physics, 2007, 105(2–3): 385–390
[103]
Inamdar A D, Aiyer R C. Asian Journal of Physics, 2005, 9(1): 1
[104]
Niranjan R S, Mulla I S, Vijayamohanan K. National Seminar on Physics and Technology of Sensors (NSPTS), Pune, India, 2004
[105]
Tudorache F, Rezlescu E, Popa P D, . Study of some simple ferrites as reducing gas sensors. Journal of Optoelectronics and Advanced Materials, 2008, 10(7): 1889–1893
[106]
Raju A R, Rao C N. Gas-sensing characteristics of ZnO and copper-impregnated ZnO. Sensors and Actuators B: Chemical, 1991, 3(4): 305–310
[107]
Jain G H, Patil L A, Wagh M S, . Surface modified BaTiO3 thick film resistors as H2S gas sensors. Sensors and Actuators B: Chemical, 2006, 117(1): 159–165
[108]
Kersen U. Gas sensing properties of nanocrystalline metal oxide powders produced by thermal decomposition and mechanochemical processing. Dissertation for the Doctoral Degree. Otaniemi, Espoo, Finland: Helsinki University of Technology, 2003
[109]
Rumyantseva M, Labeau M, Delabouglise G, . Copper and nickel doping effect on interaction of SnO2 films with H2S. Journal of Materials Chemistry, 1997, 7(9): 1785–1790
[110]
Saraladevi G, Rao S M V J. Journal of the Electrochemical Society, 1995, 142: 8
[111]
Tamaki J, Maekawa T, Miura N, . CuO–SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B: Chemical, 1992, 9(3): 197–203
[112]
Patil L A, Patil D R. Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sensors and Actuators B: Chemical, 2006, 120(1): 316–323
[113]
Chowdhuri A, Gupta V, Sreenivas K, . Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters, 2004, 84(7): 1180–1182
[114]
Wu Y, Tong M, He X, . Thin film sensors of SnO2–CuO–SnO2 sandwich structure to H2S. Sensors and Actuators B: Chemical, 2001, 79(2–3): 187–191
[115]
Katti V R, Debnath A K, Muthe K P, . Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sensors and Actuators B: Chemical, 2003, 96(1–2): 245–252
[116]
Patil L A, Pathan I G. Journal of Nano- and Electronic Physics, 2011, 3(1): 433
[117]
Xu C N, Miura N, Ishida Y, . Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sensors and Actuators B: Chemical, 2000, 65(1–3): 163–165
[118]
Patil D R, Patil L A. Preparation and study of NH3 gas sensing behavior of Fe2O3 doped ZnO thick film resistors. Sensors & Transducers Journal, 2006, 70(8): 661–670
[119]
Ishihara T, Kometani K, Mizuhara Y, . Mixed oxide capacitor of CuO-BaTiO3 as a new type CO2 gas sensor. Journal of the American Ceramic Society, 1992, 75(3): 613–618
[120]
Miura N, Yan Y, Sato M, . Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate. Sensors and Actuators B: Chemical, 1995, 24(1–3): 260–265
[121]
Imanaka N, Murata T, Kawasato T, . CO2 detection with lithium solid electrolyte sensors. Sensors & Transducers B, 1993, 13(1–3): 476–479
[122]
Telipan G, Ignat M, Vlad A, . Lanthanum complex for gas sensing. Journal of Optoelectronics and Advanced Materials, 2008, 10(12): 3409–3412
[123]
Chaudhari G N, Pawar M J. Ethanol sensing performances of modified CoFe2O4 nanocrystals prepared by polymerizable complex route. Journal of Optoelectronics and Advanced Materials, 2008, 10(10): 2574–2577
[124]
Patil D R, Patil L A, Amalnerkar D P. Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors. Bulletin of Materials Science, 2007, 30(6): 553–559
[125]
Ivanov P T. Design, fabrication and characterization of thick film gas sensors. Dissertation for the Doctoral Degree. Tarragona, Spain: Rovira i Virgili University, 2004

Acknowledgements

The authors are thankful to Principal S. G. Patil Arts, Commerce & Science College Sakri and the Principal L. V. H. College, Panchavati, Nashik for providing laboratory facilities and moral support. NGD is thankful to INSA and DST, New Delhi for awarding DST INSPIRE Faculty award [IFA-13 PH-61].

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(628 KB)

Accesses

Citations

Detail

Sections
Recommended

/