Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants
Zhen-Tao YU, Ming-Hua ZHANG, Yu-Xing TIAN, Jun CHENG, Xi-Qun MA, Han-Yuan LIU, Chang WANG
Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants
Developing the new titanium alloys with excellent biomechanical compatibility has been an important research direction of surgical implants materials. Present paper summarizes the international researches and developments of biomedical titanium alloys. Aiming at increasing the biomechanical compatibility, it also introduces the exploration and improvement of alloy designing, mechanical processing, microstructure and phase transformation, and finally outlines the directions for scientific research on the biomedical titanium alloys in the future.
biomedical Ti alloys / biomechanical compatibility / surgical implant / microstructure / phase transformation
[1] |
Yu Z T, Zhang M H, Yu S,
|
[2] |
Bothe R T, Beaton L E, Davenport H A. Reaction of bone to multiple metallic implants. Surgery, Gynecology & Obstetrics, 1940, 71(5): 598–602
|
[3] |
Leventhal G S. Titanium, a metal for surgery. The Journal of Bone and Joint Surgery: American Volume, 1951, 33(2): 473–474
|
[4] |
Branemark K P, Breine U, Lindstrom J,
|
[5] |
Branemark P I, Hansson B O, Adell R,
|
[6] |
Geetha M, Singh A K, Asokamani R,
|
[7] |
Long M, Rack H J. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials, 1998, 19(18): 1621–1639
|
[8] |
Kuroda D, Niinomi M, Morinaga M,
|
[9] |
Davidson J A, Gergette F S. State of the art materials for orthopedic prosthetic devices. Society of Manufacturing Engineers, 1987, 87: 122–126
|
[10] |
Zwicker R, Buehler K, Mueller R,
|
[11] |
Semlitsch M, Staub F, Weber H. Titanium–aluminium–niobium alloy, development for biocompatible, high strength surgical implants. Biomedical Technology, 1985, 30(12): 334–339
|
[12] |
Sumner D R, Galante J O. Determinants of stress shielding: design versus materials versus interface. Clinical Orthopaedics and Related Research, 1992, 274: 202–212
|
[13] |
Geetha M, Singh A K, Muraleedharan K,
|
[14] |
Yu Z T, Zhang Y F, Yuan S B,
|
[15] |
Yu Z T, Zhang Y F, Liu H,
|
[16] |
Hao Y L, Yang R. Ti–Nb–Zr–Sn Ti alloy with nano grain and high strength. Acta Metallurgica Sinica, 2005, 41(11): 1183–1189 (in Chinese)
|
[17] |
Okazaki Y, Ito Y, Kyo K,
|
[18] |
Song Y, Xu D S, Yang R,
|
[19] |
Wang X Z, Xiao J S, Zhang Z,
|
[20] |
Takahashi E, Sakurai T, Watanabe S,
|
[21] |
Obbard E G, Hao Y L, Talling R J,
|
[22] |
Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 1998, 243(1–2): 231–236
|
[23] |
Song Y, Yang R, Li D,
|
[24] |
Hwang J, Kuramoto S, Furuta T,
|
[25] |
Guillemot F, Prima F, Bareille R,
|
[26] |
Saito T, Furuta T, Hwang J H,
|
[27] |
Kent D, Wang G, Yu Z,
|
[28] |
Kent D, Wang G, Yu Z T,
|
[29] |
Paladugu M, Kent D, Wang G,
|
[30] |
Hao Y L, Li S J, Sun S Y,
|
[31] |
Yu Z T, Han J Y, Ma X Q,
|
[32] |
Grosdidier T, Philippe M J. Deformation induced martensite and superelasticity in a β-metastable titanium alloy. Materials Science and Engineering A, 2000, 291(1–2): 218–223
|
[33] |
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(1): 30–42
|
[34] |
Yu Z T, Tian Y X, Yu S,
|
[35] |
Ma X Q, Yu Z T, Niu J L,
|
[36] |
Leon M J, Evgeny L, Ruslan Z,
|
[37] |
Kuramoto S, Furuta T, Hwang J H,
|
[38] |
Yu Z T, Zhou L, Luo L J,
|
[39] |
Duerig T W, Terlinde G T, Willams J C. Phase transformation and tensile properties of Ti–10V–2Fe–3Al. Metallurgical Transactions A, 1980, 11(12): 1987–1998
|
[40] |
Couchi C, Fukai H, Hasegawa K. Titanium’98, Proceeding of 9th International Titanium Conference, Xi’an, China, 1998, 129–137
|
[41] |
Zhou T, Aindow M, Alpay S P,
|
[42] |
Hanada S, Yoshio T, Nishimura K,
|
[43] |
Guibert J Ph, Servant C. Titanium’95, Science and Technology, Proceedings of 8th World Conference on Titanium, 1995, 972–979
|
[44] |
Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012, 8(11): 3888–3903
|
[45] |
Yu Z T, Zhou L, Niu J L,
|
[46] |
Ma X Q, Yu Z T, Han Y,
|
[47] |
Yu Z T, Zheng Y F, Zhou L,
|
[48] |
Yu Z T, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM. Materials Science and Engineering A, 2006, 438–440: 391–394
|
[49] |
Mow V C, Huiskes R, eds. Basic Orthopaedic Biomechanics and Mechano-Biology (in Chinese, trans. Tang T T, Pei G X, Li X,
|
[50] |
Huang R, Han Y. The effect of surface grain refinement of Ti–25Nb–3Mo–3Zr–2Sn alloy on the osteoblast behavior. Chinese Journal of Clinical and Basic Orthopaedic Research, 2013, 5(1): 28–34 (in Chinese)
|
/
〈 | 〉 |