Magnesium based degradable biomaterials: A review
Xue-Nan GU, Shuang-Shuang LI, Xiao-Ming Li, Yu-Bo Fan
Magnesium based degradable biomaterials: A review
Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg--Ca, Mg--Sr, Mg--Zn and Mg--REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.
magnesium alloy / degradable biomaterial / coating / degradation / corrosion
[1] |
Witte F, Kaese V, Haferkamp H,
|
[2] |
Witte F, Fischer J, Nellesen J,
|
[3] |
Li Z, Gu X, Lou S,
|
[4] |
Erbel R, Di Mario C, Bartunek J,
|
[5] |
Haude M, Erbel R, Erne P,
|
[6] |
Gruhl S, Witte F, Vogt J,
|
[7] |
Krause A, Höh N, Bormann D,
|
[8] |
Bowman B A, Russell R M. Present Knowledge in Nutrition. 9th ed. Washington DC: International Life Science Institute Press, 2006
|
[9] |
Staiger M P, Pietak A M, Huadmai J,
|
[10] |
Zheng Y F, Gu X N, Witte F. Biodegradable metals. Materials Science and Engineering R: Reports, 2014, 77: 1–34
|
[11] |
Saw B A. Corrosion resistance of magnesium alloy. In: Cramer D S, Covino B S, eds. ASM Handbook Volume 13A: Corrosion Fundamentals, Testing and Protection. UK: ASM International, 2003
|
[12] |
Erdmann N, Angrisani N, Reifenrath J,
|
[13] |
Gu X N, Xie X H, Li N,
|
[14] |
Tan L, Wang Q, Lin X,
|
[15] |
Fischer J, Prosenc M H, Wolff M,
|
[16] |
Lorenz C, Brunner J G, Kollmannsberger P,
|
[17] |
Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701
|
[18] |
Sun H, Li C, Xie Y,
|
[19] |
Yamagishi H, Fukuhara M, Chiba A. Determination of the cyclic-tension fatigue of extruded pure magnesium using multiple ultrasonic waves. Materials Transactions, 2010, 51(7): 1255–1263
|
[20] |
Witte F, Hort N, Vogt C,
|
[21] |
Atrens A, Liu M, Zainal Abidin N I. Corrosion mechanism applicable to biodegradable magnesium implants. Materials Science and Engineering B, 2011, 176(20): 1609–1636
|
[22] |
Gu X, Zheng Y, Cheng Y,
|
[23] |
Bornapour M, Muja N, Shum-Tim D,
|
[24] |
Chang T C, Wang J Y, Chu C L,
|
[25] |
Song G, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11–33
|
[26] |
Zeng R, Zhang J, Huang W,
|
[27] |
Zeng R, Dietzel W, Witte F,
|
[28] |
Zeng R C, Sun L, Zheng Y F,
|
[29] |
Seiler H G, Sigel H, Sigel A. Handbook of Toxicity of Inorganic Compounds. New York: Marcel Dekker Inc., 1988
|
[30] |
Sigel H. Metal Ions in Biological System. New York: Marcel Dekker Inc., 1986
|
[31] |
Nakamura Y, Tsumura Y, Tonogai Y,
|
[32] |
Wan Y, Xiong G, Luo H,
|
[33] |
Liu C L, Wang Y J, Zeng R C,
|
[34] |
Drynda A, Hassel T, Hoehn R,
|
[35] |
Jeong Y S, Kim W J. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corrosion Science, 2014, 82: 392–403
|
[36] |
Han H-S, Yin M H, Seok H-K,
|
[37] |
Guo Y B, Salahshoor M. Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesium–calcium implant alloys. CIRP Annals - Manufacturing Technology, 2010, 59(1): 151–154
|
[38] |
Salahshoor M, Guo Y B. Cutting mechanics in high speed dry machining of biomedical magnesium–calcium alloy using internal state variable plasticity model. International Journal of Machine Tools & Manufacture, 2011, 51(7–8): 579–590
|
[39] |
Sealy M P, Guo Y B. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium–calcium (Mg–Ca) alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(7): 488–496
|
[40] |
Salahshoor M, Guo Y. Biodegradable orthopedic magnesium–calcium (MgCa) alloys, processing, and corrosion performance. Materials, 2012, 5(12): 135–155
|
[41] |
Marie P J. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone, 2006, 38(2): 10–14
|
[42] |
Dahl S G, Allain P, Marie P J,
|
[43] |
Zhang W, Shen Y, Pan H,
|
[44] |
Pors Nielsen S. The biological role of strontium. Bone, 2004, 35(3): 583–588
|
[45] |
Brar H S, Wong J, Manuel M V. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7: 87–95
|
[46] |
Avedesian M M, Baker H. ASM Specialty Handbook – Magnesium and Magnesium Alloys. Ohio: ASM International, 1999
|
[47] |
Zhang S, Zhang X, Zhao C,
|
[48] |
Hofstetter J, Becker M, Martinelli E,
|
[49] |
Gao J H, Guan S K, Ren Z W,
|
[50] |
Zhang B, Hou Y, Wang X,
|
[51] |
Sun Y, Zhang B, Wang Y,
|
[52] |
Yin P, Li N, Lei T,
|
[53] |
Cipriano A, Zhao T, Johnson I,
|
[54] |
Guan R, Cipriano A F, Zhao Z y,
|
[55] |
Hänzi A C, Sologubenko A S, Uggowitzer P J. Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications. International Journal of Materials Research, 2009, 100(8): 1127–1136
|
[56] |
Wu Q, Zhu S, Wang L,
|
[57] |
Zhang E, He W, Du H,
|
[58] |
Hänzi A C, Gerber I, Schinhammer M,
|
[59] |
Willbold E, Kalla K, Bartsch I,
|
[60] |
Xu L, Zhang E, Yang K. Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application. Journal of Materials Science: Materials in Medicine, 2009, 20(4): 859–867
|
[61] |
Xu L P, Yu G N, Zhang E,
|
[62] |
Zhang E, Yin D, Xu L,
|
[63] |
Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Materials Science and Engineering A, 2008, 497(1–2): 111–118
|
[64] |
Bae D H, Kim S H, Kim D H,
|
[65] |
Pierce F S, Poon S J, Guo Q. Electron localization in metallic quasicrystals. Science, 1993, 261(5122): 737–739
|
[66] |
Lee J Y, Kim D H, Lim H K,
|
[67] |
Rosalbino F, De Negri S, Saccone A,
|
[68] |
Zhang E, Xu L, Yu G,
|
[69] |
Feyerabend F, Fischer J, Holtz J,
|
[70] |
Birbilis N, Easton M A, Sudholz A D,
|
[71] |
Friedrich H E, Mordike B L. Magnesium Technology – Metallurgy, Design Date, Applications. New York: Springer Berlin Heidelberg, 2005
|
[72] |
Zhang X, Yuan G, Niu J,
|
[73] |
Zhang X, Yuan G, Mao L,
|
[74] |
Zhang X, Yuan G, Mao L,
|
[75] |
Zhang X, Yuan G, Wang Z. Mechanical properties and biocorrosion resistance of Mg–Nd–Zn–Zr alloy improved by cyclic extrusion and compression. Materials Letters, 2012, 74: 128–131
|
[76] |
Chang J W, Fu P H, Guo X W,
|
[77] |
Peng Q, Huang Y, Zhou L,
|
[78] |
Hort N, Huang Y, Fechner D,
|
[79] |
Yang L, Hort N, Laipple D,
|
[80] |
Yang L, Huang Y, Feyerabend F,
|
[81] |
Yang L, Huang Y, Feyerabend F,
|
[82] |
Yang L, Huang Y, Peng Q,
|
[83] |
Brar H S, Berglund I S, Allen J B,
|
[84] |
Liu M, Schmutz P, Uggowitzer P J,
|
[85] |
Zhang X, Zhang K, Deng X,
|
[86] |
Datta M K, Chou D T, Hong D,
|
[87] |
Gu X N, Zheng Y F, Zhong S P,
|
[88] |
Ma E, Xu J. Biodegradable alloys: The glass window of opportunities. Nature Materials, 2009, 8(11): 855–857
|
[89] |
Wessels V, Le Mené G, Fischerauer S F,
|
[90] |
Zberg B, Uggowitzer P J, Loffler J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891
|
[91] |
Zhao Y Y, Zhao X. Structural relaxation and its influence on the elastic properties and notch toughness of Mg–Zn–Ca bulk metallic glass. Journal of Alloys and Compounds, 2012, 515: 154–160
|
[92] |
Zberg B, Arata E R, Uggowitzer P J,
|
[93] |
Zarandi F, Yue S. Magnesium sheet, challenges and opportunities. In: Czerwinski F, ed. Magnesium Alloys – Design, Processing and Properties. InTech, 2011
|
[94] |
Kang F, Liu J Q, Wang J T,
|
[95] |
Gu X N, Li N, Zheng Y F,
|
[96] |
Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 2008, 62(16): 2476–2479
|
[97] |
Wang H, Estrin Y, Fu H,
|
[98] |
Alvarez-Lopez M, Pereda M D, del Valle J A,
|
[99] |
Hornberger H, Virtanen S, Boccaccini A R. Biomedical coatings on magnesium alloys – A review. Acta Biomaterialia, 2012, 8(7): 2442–2455
|
[100] |
Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomaterialia, 2012, 8(1): 20–30
|
[101] |
Surmenev R A, Surmeneva M A, Ivanova A A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis — A review. Acta Biomaterialia, 2014, 10(2): 557–579
|
[102] |
Zhang Y, Zhang G, Wei M. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89B(2): 408–414
|
[103] |
Yang J X, Cui F Z, Yin Q S,
|
[104] |
Gray-Munro J E, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. Journal of Biomedical Materials Research Part A, 2009, 90A(2): 339–350
|
[105] |
Zeng R, Sun X, Song Y,
|
[106] |
Wang Q, Tan L, Xu W,
|
[107] |
Chen X B, Birbilis N, Abbott T B. A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium. Corrosion Science, 2011, 53(6): 2263–2268
|
[108] |
Zhang C-Y, Zeng R-C, Liu C-L,
|
[109] |
Zhang C y, Zeng R, Chen R,
|
[110] |
Song Y W, Shan D Y, Han E H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008, 62(17–18): 3276–3279
|
[111] |
Kannan M B, Orr L. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy. Biomedical Materials, 2011, 6(4): 045003
|
[112] |
Song Y, Zhang S, Li J,
|
[113] |
Wang H X, Guan S K, Wang X,
|
[114] |
Wang H, Guan S, Wang Y,
|
[115] |
Yao Z, Li L, Jiang Z. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Applied Surface Science, 2009, 255(13–14): 6724–6728
|
[116] |
Srinivasan P B, Liang J, Blawert C,
|
[117] |
Li J N, Cao P, Zhang X N,
|
[118] |
Gu X N, Zheng Y F, Lan Q X,
|
[119] |
Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids and Surfaces B: Biointerfaces, 2012, 93: 67–74
|
[120] |
Xu L, Yamamoto A. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition. Applied Surface Science, 2012, 258(17): 6353–6358
|
[121] |
Wong H M, Yeung K W K, Lam K O,
|
[122] |
Windhagen H, Radtke K, Weizbauer A,
|
/
〈 | 〉 |