Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg--9wt.%Li--3wt.%Al--1wt.%Zn alloy sheet
Meng-Chang LIN, Shang-Qiu LIN, Jun-Yen UAN
Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg--9wt.%Li--3wt.%Al--1wt.%Zn alloy sheet
This study investigated the effect of annealing temperature on the mechanical properties of an as-rolled Mg--9.26wt.%Li--3.03wt.%Al--1.10wt.%Zn (LAZ931) alloy sheet. The dual-phase (α+β) LAZ931 alloy plate of 3 mm in thickness were rolled (67% reduction) and then annealed at temperatures at 100°C--350°C. The alloy's ductility showed a sharp concave downward tendency as a function of annealing temperature. The elongation of the LAZ931 alloy sheet increased with annealing temperature up to 150°C, followed by a sharp decrease of the alloy’s ductility as the annealing temperature higher than 150°C. The specimen exhibited an extremely low elongation (only ~0.5%) at annealing temperature around 300°C. Formation of brittle AlLi particles on boundary resulted in Li depletion zone near by grain boundary, transforming the Li depletion zone into α (hcp) layer. The combined effects including brittle AlLi particles on boundary and the hcp α layer on boundary resulted in the brittlement of the high-temperature-annealing sample.
Mg--Li alloy / annealing / AlLi / embrittlement
[1] |
Kojima Y. Platform science and technology for advanced magnesium alloys. Materials Science Forum, 2000, 350–351(3): 3–18
|
[2] |
Mordike B L, Ebert T. Magnesium: properties – applications – potential. Materials Science and Engineering A, 2001, 302(1): 37–45
|
[3] |
Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium. JOM, 1998, 50(9): 30–34
|
[4] |
Bach F W, Rodman M, Rossberg A,
|
[5] |
Massalski T B, Okamoto H, Subramanian P R,
|
[6] |
Ninomiya R, Miyake K. A study on superlight and superplastic Mg–Li based alloys. Journal of Japan Institute of Light Metals, 2001, 51(10): 509–513
|
[7] |
Haferkamp H, Boehm R, Holzkamp U,
|
[8] |
Munroe R A. Magnesium–lithium alloy lightens electronic packaging (Electronic packaging weight reduction by using magnesium–lithium alloy). Advanced Materials and Processes, 1966, 90: 89
|
[9] |
Matsuzawa K, Koshihara T, Kojima Y. Age-hardening and mechanical properties of Mg–Li–Al alloys. Journal of Japan Institute of Light Metals, 1989, 39(1): 45–51
|
[10] |
Bach F W, Schaper M, Jaschik C. Influence of lithium on hcp magnesium alloys. Materials Science Forum, 2003, 419–422: 1037
|
[11] |
Jackson J H, Frost P D, Loonam A C,
|
[12] |
Alamo A, Banchik A D. Precipitation phenomena in the Mg–31 at% Li–1 at% Al alloy. Journal of Materials Science, 1980, 15(1): 222–229
|
[13] |
Clark J, Sturkey L. The age-hardening mechanism in magnesium–lithium–zinc alloys. Journal of the Institute of Metals, 1958, 86(6): 272–276
|
[14] |
Wang J Y, Hong W P, Hsu P C,
|
[15] |
Lin M C, Tsai C Y, Uan J Y. Converting hcp Mg–Al–Zn alloy into bcc Mg–Li–Al–Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl–KCl. Scripta Materialia, 2007, 56(7): 597–600
|
[16] |
Hatta H, Ramesh C, Kamado S,
|
[17] |
Brodskaya R, Glagoleva A, Chukhin B. Electron microscopic study of the structure of magnesium–lithium β-alloys. Metal Science and Heat Treatment, 1975, 17(5): 450–451
|
[18] |
Aida T, Hatta H, Ramesh C,
|
[19] |
Yang C W, Lui T S, Chen L H,
|
[20] |
Kim D, Han Y, Lee H,
|
[21] |
Chiu C H, Wu H Y, Wang J Y,
|
[22] |
Hsieh Z L, Lin M C, Uan J Y. Rapid direct growth of Li–Al layered double hydroxide (LDH) film on glass, silicon wafer and carbon cloth and characterization of LDH film on substrates. Journal of Materials Chemistry, 2011, 21(6): 1880–1889
|
[23] |
Song G S, Staiger M, Kral M. Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium. Materials Science and Engineering A, 2004, 371(1–2): 371–376
|
/
〈 | 〉 |