Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg--9wt.%Li--3wt.%Al--1wt.%Zn alloy sheet

Meng-Chang LIN, Shang-Qiu LIN, Jun-Yen UAN

PDF(1180 KB)
PDF(1180 KB)
Front. Mater. Sci. ›› 2014, Vol. 8 ›› Issue (3) : 271-280. DOI: 10.1007/s11706-014-0252-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg--9wt.%Li--3wt.%Al--1wt.%Zn alloy sheet

Author information +
History +

Abstract

This study investigated the effect of annealing temperature on the mechanical properties of an as-rolled Mg--9.26wt.%Li--3.03wt.%Al--1.10wt.%Zn (LAZ931) alloy sheet. The dual-phase (α+β) LAZ931 alloy plate of 3 mm in thickness were rolled (67% reduction) and then annealed at temperatures at 100°C--350°C. The alloy's ductility showed a sharp concave downward tendency as a function of annealing temperature. The elongation of the LAZ931 alloy sheet increased with annealing temperature up to 150°C, followed by a sharp decrease of the alloy’s ductility as the annealing temperature higher than 150°C. The specimen exhibited an extremely low elongation (only ~0.5%) at annealing temperature around 300°C. Formation of brittle AlLi particles on boundary resulted in Li depletion zone near by grain boundary, transforming the Li depletion zone into α (hcp) layer. The combined effects including brittle AlLi particles on boundary and the hcp α layer on boundary resulted in the brittlement of the high-temperature-annealing sample.

Keywords

Mg--Li alloy / annealing / AlLi / embrittlement

Cite this article

Download citation ▾
Meng-Chang LIN, Shang-Qiu LIN, Jun-Yen UAN. Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg--9wt.%Li--3wt.%Al--1wt.%Zn alloy sheet. Front. Mater. Sci., 2014, 8(3): 271‒280 https://doi.org/10.1007/s11706-014-0252-x

References

[1]
Kojima Y. Platform science and technology for advanced magnesium alloys. Materials Science Forum, 2000, 350–351(3): 3–18
[2]
Mordike B L, Ebert T. Magnesium: properties – applications – potential. Materials Science and Engineering A, 2001, 302(1): 37–45
[3]
Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium. JOM, 1998, 50(9): 30–34
[4]
Bach F W, Rodman M, Rossberg A, . Macroscopic damage by the formation of shear bands during the rolling and deep drawing of magnesium sheets. JOM, 2005, 57(5): 57–61
[5]
Massalski T B, Okamoto H, Subramanian P R, . Binary Alloy Phase Diagrams. Ohio: ASM International, 1990
[6]
Ninomiya R, Miyake K. A study on superlight and superplastic Mg–Li based alloys. Journal of Japan Institute of Light Metals, 2001, 51(10): 509–513
[7]
Haferkamp H, Boehm R, Holzkamp U, Alloy development, processing and applications in magnesium lithium alloys. Materials Transactions, 2001, 42(7): 1160–1166
[8]
Munroe R A. Magnesium–lithium alloy lightens electronic packaging (Electronic packaging weight reduction by using magnesium–lithium alloy). Advanced Materials and Processes, 1966, 90: 89
[9]
Matsuzawa K, Koshihara T, Kojima Y. Age-hardening and mechanical properties of Mg–Li–Al alloys. Journal of Japan Institute of Light Metals, 1989, 39(1): 45–51
[10]
Bach F W, Schaper M, Jaschik C. Influence of lithium on hcp magnesium alloys. Materials Science Forum, 2003, 419–422: 1037
[11]
Jackson J H, Frost P D, Loonam A C, . Magnesium–lithium base alloys preparation, fabrication and general characteristics. Transactions AIMME, 1949, 185: 149–168
[12]
Alamo A, Banchik A D. Precipitation phenomena in the Mg–31 at% Li–1 at% Al alloy. Journal of Materials Science, 1980, 15(1): 222–229
[13]
Clark J, Sturkey L. The age-hardening mechanism in magnesium–lithium–zinc alloys. Journal of the Institute of Metals, 1958, 86(6): 272–276
[14]
Wang J Y, Hong W P, Hsu P C, . Microstructures and mechanical behavior of processed Mg–Li–Zn alloy. Materials Science Forum, 2003, 419–422: 165–170
[15]
Lin M C, Tsai C Y, Uan J Y. Converting hcp Mg–Al–Zn alloy into bcc Mg–Li–Al–Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl–KCl. Scripta Materialia, 2007, 56(7): 597–600
[16]
Hatta H, Ramesh C, Kamado S, . Heat treatment characteris-tics and mechanical properties of superlight Mg–Li–Al alloys. Journal of Japan Institute of Light Metals, 1997, 47(4): 195–201
[17]
Brodskaya R, Glagoleva A, Chukhin B. Electron microscopic study of the structure of magnesium–lithium β-alloys. Metal Science and Heat Treatment, 1975, 17(5): 450–451
[18]
Aida T, Hatta H, Ramesh C, . Quenching hardenability, ageing characteristics and mechanical properties of Mg–17.5 asymptotically equal to 12.5 mass% Al alloys. Institute of Materials, 1997, 649: 343–358
[19]
Yang C W, Lui T S, Chen L H, . Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the α + β-type Mg–Li–Al–Zn alloy. Scripta Materialia, 2009, 61(12): 1141–1144
[20]
Kim D, Han Y, Lee H, . Structure and decomposition behaviour of Mg–Li–Al alloys. Scripta Metallurgica et Materialia, 1994, 31(7): 819–824
[21]
Chiu C H, Wu H Y, Wang J Y, . Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments. Journal of Alloys and Compounds, 2008, 460(1–2): 246–252
[22]
Hsieh Z L, Lin M C, Uan J Y. Rapid direct growth of Li–Al layered double hydroxide (LDH) film on glass, silicon wafer and carbon cloth and characterization of LDH film on substrates. Journal of Materials Chemistry, 2011, 21(6): 1880–1889
[23]
Song G S, Staiger M, Kral M. Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium. Materials Science and Engineering A, 2004, 371(1–2): 371–376

Acknowledgements

The authors are grateful to the SEM/X-ray Lab., NCHU for supporting the microstructural examination and X-ray diffraction experiments.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1180 KB)

Accesses

Citations

Detail

Sections
Recommended

/