Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells
Jin-Ling MA, Jeroen J. J. P. van den BEUCKEN, Ju-Li PAN, Fu-Zhai CUI, Su CHEN
Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells
Cellular strategies remain a crucial component in bone tissue engineering (BTE). So far, the outcome of cell-based strategies from initial clinical trials is far behind compared to animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the tissue-engineered constructs. Cocultures, by introducing angiogenic cells into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, pre-clinical studies demonstrated that cocultures enhance vascularization and bone formation compared to monocultures. However, there has been no report on the application of cocultures in clinics. Therefore, this mini-review aims to provide an overview regarding (i) critical parameters in cocultures and the outcomes of cocultures compared to monocultures in the currently available pre-clinical studies using human mesenchymal stem cells implanted in orthotopic animal models; and (ii) the usage of monocultures in clinical application in BTE.
mesenchymal stem cell (MSC) / endothelial cell (EC) / coculture / vasculari-zation / tissue regeneration
[1] |
ScherberichA, MüllerA M, SchäferD J,
|
[2] |
MaJ, van den BeuckenJ J, YangF,
|
[3] |
XueY, XingZ, HellemS,
|
[4] |
MeyerU W H. Bone and Cartilage Engineering. Berlin: Springer-Verlag/New York, LLC, 2006
|
[5] |
PedersenT O, BloisA L, XueY,
|
[6] |
ZhaoX, LiuL, WangF K,
|
[7] |
TrkovS, EngG, Di LiddoR,
|
[8] |
SantosM I, UngerR E, SousaR A,
|
[9] |
TaoJ, SunY, WangQ G,
|
[10] |
ZhouJ, LinH, FangT,
|
[11] |
KoobS, Torio-PadronN, StarkG B,
|
[12] |
GeuzeR E, WegmanF, ÖnerF C,
|
[13] |
UngerR E, SartorisA, PetersK,
|
[14] |
HofmannA, RitzU, VerrierS,
|
[15] |
Thein-HanW, XuH H. Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts. Tissue Engineering Part A, 2013, 19(15–16): 1675–1685
|
[16] |
RouwkemaJ, WesterweelP E, de BoerJ,
|
[17] |
PedersenT O, BloisA L, XueY,
|
[18] |
SteffensL, WengerA, StarkG B,
|
[19] |
FuchsS, GhanaatiS, OrthC,
|
[20] |
GraingerS J, PutnamA J. Assessing the permeability of engineered capillary networks in a 3D culture. PLoS ONE, 2011, 6(7): e22086
|
[21] |
SteinerD, LampertF, StarkG B,
|
[22] |
BidarraS J, BarriasC C, BarbosaM A,
|
[23] |
SunH, QuZ, GuoY,
|
[24] |
BulnheimU, MüllerP, NeumannH-G,
|
[25] |
KangY, KimS, FahrenholtzM,
|
[26] |
GotmanI, Ben-DavidD, UngerR E,
|
[27] |
PangH, WuX H, FuS L,
|
[28] |
LinR Z, Melero-MartinJ M. Bioengineering human microvascular networks in immunodeficient mice. Journal of Visualized Experiments, 2011, (53): e3065
|
[29] |
SunL, ParkerS T, SyojiD,
|
[30] |
GuZ, XieH, LiL,
|
[31] |
KaiglerD, KrebsbachP H, WangZ,
|
[32] |
SeebachC, HenrichD, KählingC,
|
[33] |
HenrichD, SeebachC, KaehlingC,
|
[34] |
KimJ Y, JinG Z, ParkI S,
|
[35] |
MaJ, BothS K, JiW,
|
[36] |
HeX, DziakR, YuanX,
|
[37] |
LiG, WangX, CaoJ,
|
[38] |
LiuJ, LiuC, SunB,
|
[39] |
HibiH, YamadaY, UedaM,
|
[40] |
BehniaH, KhojastehA, SoleimaniM,
|
[41] |
MeijerG J, de BruijnJ D, KooleR,
|
[42] |
ZamiriB, ShahidiS, EslaminejadM B,
|
[43] |
LeeJ, SungH M, JangJ D,
|
[44] |
ShayestehY S, KhojastehA, SoleimaniM,
|
[45] |
MesimäkiK, LindroosB, TörnwallJ,
|
[46] |
d’AquinoR, De RosaA, LanzaV,
|
[47] |
NishiM, MatsumotoR, DongJ,
|
[48] |
HongM, JoH, AnkenyR F,
|
[49] |
BarronM J, GoldmanJ, TsaiC J,
|
/
〈 | 〉 |