[1] Zhang H, He Q, Zhu X,
. Surfactant free solution phase synthesis of monodispersed SnO
2 hierarchical nanostructures and gas sensing properties.
CrystEngComm , 2012, 14(9): 3169–3176
[2] Wan Q, Wang T H. Single-crystalline Sb-doped SnO
2 nanowires: synthesis and gas sensor application.
Chemical Communications , 2005, 30(30): 3841–3843
[3] Zum Felde U, Haase M, Weller H. Electrochromism of highly doped nanocrystalline SnO
2:Sb.
The Journal of Physical Che-mistry B , 2000, 104(40): 9388–9395
[4] Wang Y, Djerdj I, Smarsly B,
. Antimony-doped SnO
2 nanopowders with high crystallinity for lithium-ion battery electrode.
Chemistry of Materials , 2009, 21(14): 3202–3209
[5] Xu C H, Sun J, Gao L. Direct growth of monodisperse SnO
2 nanorods on graphene as high capacity anode materials for lithium ion batteries.
Journal of Materials Chemistry , 2012, 22(3): 975–979
[6] Li Z D, Zhou Y, Yu T,
. Unique Zn-doped SnO
2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell.
CrystEngComm , 2012, 14(20): 6462–6468
[7] Kim Y S, Yu B K, Kim D Y,
. A hybridized electron-selective layer using Sb-doped SnO
2 nanowires for efficient inverted polymer solar cells.
Solar Energy Materials and Solar Cells , 2011, 95(10): 2874–2879
[8] Lim J, Jeong B Y, Yoon H G,
. Inkjet-printing of antimony-doped tin oxide (ATO) films for transparent conducting electrodes.
Journal of Nanoscience and Nanotechnology , 2012, 12(2): 1675–1678
[9] Leem J W, Yu J S. Physical properties of electrically conductive Sb-doped SnO
2 transparent electrodes by thermal annealing dependent structural changes for photovoltaic applications.
Materials Science and Engineering B , 2011, 176(15): 1207–1212
[10] Wu S S, Cao H Q, Yin S F,
. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO
2 nanocrystals.
Journal of Physical Chemistry C , 2009, 113(41): 17893–17898
[11] Wang Y, Fan C, Hua B,
. Photoelectrocatalytic activity of two antimony doped SnO
2 films for oxidation of phenol pollutants.
Transactions of Nonferrous Metals Society of China , 2009, 19(3): 778–783
[12] Paniza M. Chapter 2: Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants. In: Comninellis C, Chen G, eds.
Electrochemistry for the Environment .
Springer, 2010, 25
[13] Robertson J, Falabretti B. Chapter 2: electronic structure of transparent conducting oxides. In: Ginley D S, ed.
Handbook of Transparent Conductors .
New York:
Springer, 2010, 27
[14] Singh A K, Janotti A, Scheffler M,
. Sources of electrical conductivity in SnO
2.
Physical Review Letters , 2008, 101(5): 055502 (4 pages)
[15] Li Z Q, Yin Y L, Liu X D,
. Electronic structure and optical properties of Sb-doped SnO
2.
Journal of Applied Physics , 2009, 106(8): 083701
[16] Al-Gaashani R, Radiman S, Tabet N,
. Optical properties of SnO
2 nanostructures prepared via one-step thermal decomposition of tin(II) chloride dihydrate.
Materials Science and Engineering B , 2012, 177(6): 462–470
[17] Yu D, Wang D, Yu W,
. Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method.
Materials Letters , 2004, 58(1–2): 84–87
[18] Ibarguen C A, Mosquera A, Parra R,
. Synthesis of SnO
2 nanoparticles through the controlled precipitation route.
Materials Chemistry and Physics , 2007, 101(2–3): 433–440
[19] Nguyen T B, Le T T B, Nguyen N L. The preparation of SnO
2 and SnO
2:Sb nanopowders by a hydrothermal method.
Advances in Natural Sciences: Nanoscience and Nanotechnology , 2010, 1(2): 025002 (4 pages)
[20] Korosi L, Papp S, Meynen V,
. Preparation and characterization of SnO
2 nanoparticles of enhanced thermal stability: The effect of phosphoric acid treatment on SnO
2·
nH
2O.
Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 268(1–3): 147–154
[21] Seo M, Akutsu Y, Kagemoto H. Preparation and properties of Sb-doped SnO
2/metal substrates by sol–gel and dip coating.
Ceramics International , 2007, 33(4): 625–629
[22] Zhu F L, Meng Y S. Synthesis and characterization of antimony doped tin oxide conductive nanoparticles by alkoxide hydrolysis method.
Advanced Materials Research , 2013, 702: 167–171
[23] Leite E R, Maciel A P, Weber I T,
. Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution.
Advanced Materials , 2002, 14(12): 905–908
[24] Rodrigues E C P E, Olivi P. Preparation and characterization of Sb-doped SnO
2 films with controlled stoichiometry from polymeric precursors.
Journal of Physics and Chemistry of Solids , 2003, 64(7): 1105–1112
[25] Xu J M, Li L, Wang S,
. Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals.
CrystEngComm , 2013, 15(17): 3296–3300
[26] Zhong X, Yang B, Zhang X,
. Effect of calcining temperature and time on the characteristics of Sb-doped SnO
2 nanoparticles synthesized by the sol–gel method.
Particuology , 2012, 10(3): 365–370
[27] Aziz M, Saber Abbas S, Wan Baharom W R. Size-controlled synthesis of SnO
2 nanoparticles by sol–gel method.
Materials Letters , 2013, 91: 31–34
[28] Jeng J S. The influence of annealing atmosphere on the material properties of sol–gel derived SnO
2:Sb films before and after annealing.
Applied Surface Science , 2012, 258(16): 5981–5986
[29] Ningthoujam R S, Kulshreshtha S K. Nanocrystalline SnO
2 from thermal decomposition of tin citrate crystal: luminescence and Raman studies.
Materials Research Bulletin , 2009, 44(1): 57–62
[30] Gordillo G, Moreno L C, de la Cruz W,
. Preparation and characterization of SnO
2 thin films deposited by spray pyrolysis from SnC1
2 and SnC1
4 precursors.
Thin Solid Films , 1994, 252(1): 61–66
[31] Comninellis Ch, Vercesi G P. Problems in DSA? coating deposition by termal decomposition.
Journal of Applied Electrochemistry , 1991, 21(2): 136–142
[32] Terrier C, Chatelon J P, Roger J A,
. Analysis of antimony doping in tin oxide thin films obtained by the sol–gel method.
Journal of Sol–Gel Science and Technology , 1997, 10(1): 75–81
[33] Terrier C, Chatelon J P, Berjoan R,
. Sb-doped SnO
2, transparent conducting oxide from the sol–gel dip-coating technique.
Thin Solid Films , 1995, 263(1): 37–41
[34] Gonzalez-Oliver C J R, Kato I. Sn(Sb)-oxide sol–gel coatings on glass.
Journal of Non-Crystalline Solids , 1986, 82(1–3): 400–410
[35] Xu C, Xu G, Liu Y,
. Preparation and characterization of SnO
2 nanorods by thermal decomposition of SnC
2O
4 precursor.
Scripta Materialia , 2002, 46(11): 789–794
[36] Bhagwat M, Shah P, Ramaswamy V. Synthesis of nanocrystalline SnO
2 powder by amorphous citrate route.
Materials Letters , 2003, 57(9–10): 1604–1611
[37] Pechini M P.
US Patent,
3 330 697, 1967-07-
01[38] Besso M M.
US Patent,
3 213 120, 1965-10-
19[39] Tselesh A S. Anodic behaviour of tin in citrate solutions: The IR and XPS study on the composition of the passive layer.
Thin Solid Films , 2008, 516(18): 6253–6260
[40] Chalupa J, Handlir K, Cisarova I,
. Structural study of bis(triorganotin(IV)) esters of 4-ketopimelic acid.
Journal of Organometallic Chemistry , 2006, 691(12): 2631–2640
[41] Feng S, Tang Y, Xiao T. Anodization, precursor route to flowerlike patterns composed of nanoporous tin oxide nanostrips on tin substrate.
Journal of Physical Chemistry C , 2009, 113(12): 4809–4813
[42]
Kirk-Othmer Encyclopedia of Chemical Technology.
John Wiley & Sons, Inc.
Vol. 25, 2007
[43] Batista P D, Mulato M, Graeff C F O,
. SnO
2 extended gate field-effect transistor as pH sensor.
Brazilian Journal of Physics , 2006, 36(2a): 478–481
[44] Grzeta B, Tkalcec E, Goebbert C,
. Structural studies of nanocrystalline SnO
2 doped with antimony: XRD and M?ssbauer spectroscopy.
Journal of Physics and Chemistry of Solids , 2002, 63(5): 765–772
[45] Krishnakumar T, Jayaprakash R, Pinna N,
. Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles.
Journal of Physics and Chemistry of Solids , 2009, 70(6): 993–999
[46] Zhang D L, Tao L, Deng Z B,
. Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol–gel dip-coating processing.
Materials Chemistry and Physics , 2006, 100(2–3): 275–280