Advanced engineering and biomimetic materials for bone repair and regeneration

Lei YANG1(), Chao ZHONG2,3()

PDF(1803 KB)
PDF(1803 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 313-334. DOI: 10.1007/s11706-013-0226-4
REVIEW ARTICLE
REVIEW ARTICLE

Advanced engineering and biomimetic materials for bone repair and regeneration

  • Lei YANG1(), Chao ZHONG2,3()
Author information +
History +

Abstract

Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.

Keywords

bone / engineering material / biomimetic material / implant / biomineralization

Cite this article

Download citation ▾
Lei YANG, Chao ZHONG. Advanced engineering and biomimetic materials for bone repair and regeneration. Front Mater Sci, 2013, 7(4): 313‒334 https://doi.org/10.1007/s11706-013-0226-4

References

[1] McGowen J, Raisz L, Noonan A, . Bone health and osteoporosis: a report of the surgeon general. United States Department of Health and Human Services , 2004: 69–87
[2] Bren L. Joint replacement: an inside look. FDA Consumer , 2004, 38(2): 12–19
[3] American Academy of Orthopaedic Surgeons. [Internet] Rosemont. IL: AAOS , 2008
[4] ATA Global Biomedical Materials Congress. Shanghai: Asia Technology Alliance, 2013
[5] Balasundaram G. Nanomaterials for better orthopedics. In: Webster T J, ed. Nanotechnology for the Regeneration of Hard and Soft Tissues . Hackensack, New Jersey; London: World Scientific, 2007, 53–78
[6] Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia , 2007, 3(6): 997–1006
[7] He G, Liu P, Tan Q. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials , 2012, 5(1): 16–31
[8] Kato K, Ochiai S, Yamamoto A, . Novel multilayer Ti foam with cortical bone strength and cytocompatibility. Acta Biomaterialia , 2013, 9(3): 5802–5809
[9] Arciniegas M, Aparicio C, Manero J, . Low elastic modulus metals for joint prosthesis: Tantalum and nickel–titanium foams. Journal of the European Ceramic Society , 2007, 27(11): 3391–3398
[10] Demetriou M D, Wiest A, Hofmann D C, . Amorphous metals for hard-tissue prosthesis. JOM , 2010, 62(2): 83–91
[11] Ashby M, Greer A. Metallic glasses as structural materials. Scripta Materialia , 2006, 54(3): 321–326
[12] Hofmann D C, Suh J Y, Wiest A, . Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(51): 20136–20140
[13] Hofmann D C, Suh J Y, Wiest A, . Designing metallic glass matrix composites with high toughness and tensile ductility. Nature , 2008, 451(7182): 1085–1089
[14] Hashimoto K. 2002 WR Whitney Award Lecture: In pursuit of new corrosion-resistant alloys. Corrosion , 2002, 58(9): 715–722
[15] Chen Q, Liu L, Zhang S M. The potential of Zr-based bulk metallic glasses as biomaterials. Frontiers of Materials Science in China , 2010, 4(1): 34–44
[16] Li J, Shi L-L, Zhu Z-D, . Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses. Materials Science and Engineering C , 2013, 33(4): 2113–2121
[17] Li H F, Wang Y B, Zheng Y F, . Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(7): 1721–1728
[18] Yan F, Liu G, Tao N, . Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Materialia , 2012, 60(3): 1059–1071
[19] Ye W, Li Y, Wang F. The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization. Electrochimica Acta , 2009, 54(4): 1339–1349
[20] de Oliveira P T, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials , 2004, 25(3): 403–413
[21] Cohen A, Liu-Synder P, Storey D, . Decreased fibroblast and increased osteoblast functions on ionic plasma deposited nanostructured Ti coatings. Nanoscale Research Letters , 2007, 2(8): 385–390
[22] Ward B C, Webster T J. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. Biomaterials , 2006, 27(16): 3064–3074
[23] Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials , 2004, 25(19): 4731–4739
[24] Nakanishi Y, Miura H, Tokunaga K, . Nano-level surface texturing on Co–Cr–Mo alloy inhibits macrophage activation in joint prostheses. The Bone & Joint Journal , 2013, 95-B(Supp 15): 278
[25] Huang H H, Pan S J, Lai Y L, . Osteoblast-like cell initial adhesion onto a network-structured titanium oxide layer. Scripta Materialia , 2004, 51(11): 1017–1021
[26] Yao C, Perla V, McKenzie J L, . Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion. Journal of Biomedical Nanotechnology , 2005, 1(1): 68–73
[27] Zhu X, Chen J, Scheideler L, . Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials , 2004, 25(18): 4087–4103
[28] Das K, Bose S, Bandyopadhyay A. Surface modifications and cell–materials interactions with anodized Ti. Acta Biomaterialia , 2007, 3(4): 573–585
[29] Yao C, Slamovich E B, Webster T J. Increased osteoblast adhesion on nano-rough anodized titanium and CoCrMo. NSTI Nanotechnology Conference and Trade Show – NSTI Nanotech, Technical Proceedings , 2006, 119–122
[30] Popat K C, Eltgroth M, Latempa T J, . Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials , 2007, 28(32): 4880–4888
[31] Gruen D M. Nanocrystalline diamond films. Annual Review of Materials Science , 1999, 29(1): 211–259
[32] Yang L, Zhang L, Webster T J. Carbon nanostructures for orthopedic medical applications. Nanomedicine , 2011, 6(7): 1231–1244
[33] Bajaj P, Akin D, Gupta A, . Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomedical Microdevices , 2007, 9(6): 787–794
[34] Pareta R, Yang L, Kothari A, . Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion. Journal of Biomedical Materials Research Part A , 2010, 95A(1): 129–136
[35] Yang L, Sheldon B W, Webster T J. The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials , 2009, 30(20): 3458–3465
[36] Yang L, Sheldon B W, Webster T J. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. Journal of Biomedical Materials Research Part A , 2009, 91A(2): 548–556
[37] Grausova L, Bacakova L, Kromka A, . Nanodiamond as promising material for bone tissue engineering. Journal of Nanoscience and Nanotechnology , 2009, 9(6): 3524–3534
[38] Yang L, Chinthapenta V, Li Q, . Understanding osteoblast responses to stiff nanotopographies through experiments and computational simulations. Journal of Biomedical Materials Research Part A , 2011, 97A(4): 375–382
[39] Rodrigues A A, Baranauskas V, Ceragioli H J, . In vivo preliminary evaluation of bone-microcrystalline and bone-nanocrystalline diamond interfaces. Diamond and Related Materials , 2010, 19(10): 1300–1306
[40] Yang L, Li Y W, Sheldon B W, . Altering surface energy of nanocrystalline diamond to control osteoblast responses. Journal of Materials Chemistry , 2012, 22(1): 205–214
[41] Klauser F, Hermann M, Steinmuller-Nethl D, . Direct and protein-mediated cell attachment on differently terminated nanocrystalline diamond. Chemical Vapor Deposition , 2010, 16(1–3): 42–49
[42] Kromka A, Grausova L, Bacakova L, . Semiconducting to metallic-like boron doping of nanocrystalline diamond films and its effect on osteoblastic cells. Diamond and Related Materials , 2010, 19(2–3): 190–195
[43] Kloss F R, Gassner R, Preiner J, . The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation. Biomaterials , 2008, 29(16): 2433–2442
[44] Steinmüller-Nethl D, Kloss F R, Najam-Ul-Haq M, . Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials , 2006, 27(26): 4547–4556
[45] Jakubowski W, Bartosz G, Niedzielski P, . Nanocrystalline diamond surface is resistant to bacterial colonization. Diamond and Related Materials , 2004, 13(10): 1761–1763
[46] Tran P, Webster T J. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. International Journal of Nanomedicine , 2008, 3(3): 391–396
[47] Tran P A, Sarin L, Hurt R H, . Opportunities for nanotechnology-enabled bioactive bone implants. Journal of Materials Chemistry , 2009, 19(18): 2653–2659
[48] Navarro-Alarcón M, López-Martínez M C. Essentiality of selenium in the human body: relationship with different diseases. Science of the Total Environment , 2000, 249(1–3): 347–371
[49] Kopeikin V V, Valueva S V, Kipper A I, . Synthesis of selenium nanoparticles in aqueous solutions of poly(vinylpyrrolidone) and morphological characteristics of the related nanocomposites. Polymer Science Series A , 2003, 45(4): 374–379
[50] Tran P A, Sarin L, Hurt R H, . Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. Journal of Biomedical Materials Research Part A , 2010, 93(4): 1417–1428
[51] Tran P A, Webster T J. Selenium nanoparticles inhibit Staphylococcus aureus growth. International Journal of Nanomedicine , 2011, 6: 1553–1558
[52] Wang Q, Webster T J. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. Journal of Biomedical Materials Research Part A , 2012, 100A(12): 3205–3210
[53] Holinka J, Pilz M, Kubista B, . Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. The Bone & Joint Journal , 2013, 95-B(5): 678–682
[54] Sirivisoot S, Yao C, Xiao X, . Developing biosensors for monitoring orthopedic tissue growth. In: Firestone M, Schmidt J, Malmstadt N, eds. MRS Proceedings Volume 950, Symposium D: Biosurfaces and Biointerfaces . Materials Research Society , 2007
[55] Sirivisoot S, Webster T J. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology , 2008, 19(29): 295101
[56] Sirivisoot S, Webster T J. In situ bone growth detection using carbon nanotubes–titanium sensors. BioNanoScience , 2013, 3(2): 184–191
[57] Sirivisoot S, Yao C, Xiao X, . Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology , 2007, 18(36): 365102
[58] Sirivisoot S, Pareta R, Webster T J. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology , 2011, 22(8): 085101
[59] Song J, Malathong V, Bertozzi C R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. Journal of the American Chemical Society , 2005, 127(10): 3366–3372
[60] Gkioni K, Leeuwenburgh S C G, Douglas T E L, . Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews , 2010, 16(6): 577–585
[61] Huang J, Wong C, George A, . The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials , 2007, 28(14): 2358–2367
[62] Kim H J, Kim U J, Kim H S, . Bone tissue engineering with premineralized silk scaffolds. Bone , 2008, 42(6): 1226–1234
[63] Segman-Magidovich S, Grisaru H, Gitli T, . Matrices of acidic β-sheet peptides as templates for calcium phosphate mineralization. Advanced Materials , 2008, 20(11): 2156–2161
[64] Gungormus M, Branco M, Fong H, . Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials , 2010, 31(28): 7266–7274
[65] George A, Ravindran S. Protein templates in hard tissue engineering. Nano Today , 2010, 5(4): 254–266
[66] Wise E R, Maltsev S, Davies M E, . The organic-mineral interface in bone is predominantly polysaccharide. Chemistry of Materials , 2007, 19(21): 5055–5057
[67] Hu Y Y, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(52): 22425–22429
[68] Mahamid J, Addadi L, Weiner S. Crystallization pathways in bone. Cells, Tissues, Organs , 2011, 194(2–4): 92–97
[69] Weiner S, Addadi L. Crystallization pathways in biomineralization. Annual Review of Materials Research , 2011, 41: 21–40
[70] Termine J D, Posner A S. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science , 1966, 153(3743): 1523–1525
[71] Mahamid J, Sharir A, Addadi L, . Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(35): 12748–12753
[72] Beniash E, Metzler R A, Lam R S K, . Transient amorphous calcium phosphate in forming enamel. Journal of Structural Biology , 2009, 166(2): 133–143
[73] Mahamid J, Aichmayer B, Shimoni E, . Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(14): 6316–6321
[74] Olszta M J, Cheng X G, Jee S S, . Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports , 2007, 58(3-5): 77–116
[75] Nudelman F, Pieterse K, George A, . The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Materials , 2010, 9(12): 1004–1009
[76] Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience , 2004, 4(8): 743–765
[77] Jee S S, Kasinath R K, DiMasi E, . Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm , 2011, 13(6): 2077–2083
[78] Liu Y, Kim Y K, Dai L, . Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials , 2011, 32(5): 1291–1300
[79] Liu Y, Li N, Qi Y P, . Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Advanced Materials , 2011, 23(8): 975–980
[80] Maas M, Guo P, Keeney M, . Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate. Nano Letters , 2011, 11(3): 1383–1388
[81] Wang Y, Aza?s T, Robin M, . The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nature Materials , 2012, 11(8): 724–733
[82] Palmer L C, Newcomb C J, Kaltz S R, . Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews , 2008, 108(11): 4754–4783
[83] Palmer L C, Stupp S I. Molecular self-assembly into one-dimensional nanostructures. Accounts of Chemical Research , 2008, 41(12): 1674–1684
[84] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science , 2001, 294(5547): 1684–1688
[85] Spoerke E D, Anthony S G, Stupp S I. Enzyme directed templating of artificial bone mineral. Advanced Materials , 2009, 21(4): 425–430
[86] Mata A, Geng Y B, Henrikson K J, . Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials , 2010, 31(23): 6004–6012
[87] Boskey A L, Spevak L, Doty S B, . Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcified Tissue International , 1997, 61(4): 298–305
[88] Boskey A L, Stiner D, Binderman I, . Effects of proteoglycan modification on mineral formation in a differentiating chick limb-bud mesenchymal cell culture system. Journal of Cellular Biochemistry , 1997, 64(4): 632–643
[89] Rees S G, Wassell D T H, Shellis R P, . Effect of serum albumin on glycosaminoglycan inhibition of hydroxyapatite formation. Biomaterials , 2004, 25(6): 971–977
[90] Septier D, Hall R C, Lloyd D, . Quantitative immunohistochemical evidence of a functional gradient of chondroitin 4-sulphate/dermatan sulphate, developmentally regulated in the predentine of rat incisor. The Histochemical Journal , 1998, 30(4): 275–284
[91] Takagi M, Maeno M, Yamada T, . Nature and distribution of chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone. The Histochemical Journal , 1996, 28(5): 341–351
[92] Reid D G, Duer M J, Murray R C, . The organic-mineral interface in teeth is like that in bone and dominated by polysaccharides: Universal mediators of normal calcium phosphate biomineralization in vertebrates? Chemistry of Materials , 2008, 20(11): 3549–3550
[93] Duer M J, Frisci? T, Proudfoot D, . Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arteriosclerosis, Thrombosis, and Vascular Biology , 2008, 28(11): 2030–2034
[94] Duer M J, Frisci? T, Murray R C, . The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophysical Journal , 2009, 96(8): 3372–3378
[95] Zhong C, Chu C C. Biomimetic mineralization of acid polysaccharide-based hydrogels: towards porous 3-dimensional bone-like biocomposites. Journal of Materials Chemistry , 2012, 22(13): 6080–6087
[96] Zhong C, Wu J, Reinhart-King C A, . Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomaterialia , 2010, 6(10): 3908–3918
[97] Li Q, Li M, Zhu P, . In vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template. Journal of Materials Chemistry , 2012, 22(38): 20257–20265
[98] Deng Y, Wang H, Zhang L, . In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatite in agar–gelatin co-hydrogel. Materials Letters , 2013, 104: 8–12
[99] Posner A S, Beebe R A. The surface chemistry of bone mineral and related calcium phosphates. Seminars in Arthritis and Rheumatism , 1975, 4(3): 267–291
[100] Xie B Q, Nancollas G H. How to control the size and morphology of apatite nanocrystals in bone. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(52): 22369–22370
[101] Delgado-López J M, Iafisco M, Rodríguez I, . Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomaterialia , 2012, 8(9): 3491–3499
[102] Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nature Reviews Genetics , 2012, 13(1): 21–35
AI Summary AI Mindmap
PDF(1803 KB)

Accesses

Citations

Detail

Sections
Recommended

/