Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites

N. RAGHAVENDRA1, H. N. NARASIMHA MURTHY2(), M. KRISHNA2, K. R. VISHNU MAHESH3, R. SRIDHAR2, S. FIRDOSH2, G. ANGADI2, S. C. SHARMA4

PDF(454 KB)
PDF(454 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 396-404. DOI: 10.1007/s11706-013-0224-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites

  • N. RAGHAVENDRA1, H. N. NARASIMHA MURTHY2(), M. KRISHNA2, K. R. VISHNU MAHESH3, R. SRIDHAR2, S. FIRDOSH2, G. ANGADI2, S. C. SHARMA4
Author information +
History +

Abstract

The aim of the research was to examine the influence of organo-modified Indian bentonite (IB) nanoclay dispersed in vinylester on the mechanical properties of nanoclay/vinylester/glass nanocomposites. Nanoclay was organically modified using cationic surfactant hexadecyltrimethylammonium bromide (HDTMA--Br) by cation exchange method and dispersed in vinylester using ultrasonication and twin screw extrusion. XRD of nanoclay/vinylester revealed exfoliation at 4 wt.% nanoclay indicating uniform dispersion in the polymer. DSC results showed improvement in glass transition temperature by 22.3% in 4 wt.% nanoclay/vinylester/glass when compared with that of vinylester/glass. Nanoclay/vinylester/glass with 4 wt.% nanoclay showed 29.23%, 23.84% and 60.87% improvement in ultimate tensile strength (UTS), flexural strength (FS) and interlaminar shear strength (ILSS) respectively when compared with those of vinylester/glass. The mode of tensile failure examined by SEM showed no agglomeration of nanoclay in 4 wt.% nanoclay/vinylester/glass specimens.

Keywords

Indian bentonite (IB) / ultrasonication / twin-screw extrusion / mechanical property

Cite this article

Download citation ▾
N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites. Front Mater Sci, 2013, 7(4): 396‒404 https://doi.org/10.1007/s11706-013-0224-6

References

[1] Ratna D, Khan S, Barman S, . Synthesis of vinylester–clay nanocomposites: influence of the nature of clay on mechanical, thermal and barrier properties. The Open Macromolecules Journal , 2012, 6: 59–67
[2] Ji G, Li G.Effects of nanoclay morphology on the mechanical, thermal, and fire-retardant properties of vinyl ester based nanocomposites. Materials Science and Engineering A , 2008, 498(1-2): 327–334
[3] Jeon I-Y, Baek J-B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials , 2010, 3(6): 3654–3674
[4] Karippal J J, Narasimha Murthy H N, Rai K S, . Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polymer Bulletin , 2010, 65(8): 849–861
[5] Karippal J J, Narasimha Murthy H N, Rai K S, . Electrical and thermal properties of twin-screw extruded multiwalled glass nanotube/epoxy composites. Journal of Materials Engineering and Performance , 2010, 19(8): 1143–1149
[6] Hwang T Y, Kim H J, Ahn Y. Influence of twin screw extrusion processing condition on the properties of polypropylene/multi-walled glass nanotube nanocomposites. Korea-Australia Rheology Journal , 2010, 22(2): 141–148
[7] Uddin M F, Sun C T. Effect of nanoparticle dispersion on mechanical behavior of polymer nanocomposites. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , Palm Springs, California, USA, May4-7, 2009
[8] See S C, Zhang Z Y, Dhakal H N, . Nanomechanical behavior and thermal degradation of nanoclays and supernanoclays enhanced marine gelcoat system. International Journal of Materials Engineering Innovation , 2009, 1(1): 21–39
[9] Zhao Z, Gou J, Bietto S, . Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Composites Science and Technology , 2009, 69(13): 2081–2087
[10] Villmow T, Potschke P, Pegel S, . Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer , 2008, 49(16): 3500–3509
[11] Samyn F, Bourbigot S, Jama C, . Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology? Polymer Degradation and Stability , 2008, 93(11): 2019–2024
[12] Bhat G, Hegde R R, Kamath M G, . Nanoclay reinforced fibers and nonwovens. Journal of Engineered Fibers and Fabrics , 2008, 3(3): 22–34
[13] Jo B-W, Park S-K, Kim D-K. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Construction and Building Materials , 2008, 22(1): 14–20
[14] Subramaniyan A K, Sun C T. Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness. Composites Part A: Applied Science and Manufacturing , 2007, 38(1): 34–43
[15] Wang L, Wang K, Chen L, . Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing , 2006, 37(11): 1890–1896
[16] Xu B, Zheng Q, Song Y, . Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers. Polymer , 2006, 47(8): 2904–2910
[17] Yasmin A, Luo J J, Daniel I M. Processing of expanded graphite reinforced polymer nanocomposites. Composites Science and Technology , 2006, 66(9): 1182–1189
[18] Ray D, Sengupta S, Sengupta S P, . Preparation and properties of vinylester resin/clay nanocomposites. Macromolecular Materials and Engineering , 2006, 291(12): 1513–1520
[19] Yasmin A, Luo J J, Abot J L, . Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology , 2006, 66(14): 2415–2422
[20] Kosmidou Th V, Vatalis A S, Delides C G, . Structural, mechanical and electrical characterization of epoxy–amine/glass black nanocomposites. eXPRESS Polymer Letters , 2008, 2(5): 364–372
[21] Subramaniyan A K, Sun C T. Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. Journal of Composite Materials , 2008, 42(20): 2111–2122
[22] Kanny K, Jawahar P, Moodley V K. Mechanical and tribulogicla behaviour of clay-polypropylene nanocomposites. Journal of Materials Science , 2008, 43(22): 7230–7238
[23] Chiou B-S, Yee E, Wood D, . Effects of processing conditions on nanoclay dispersion in starch-clay nanocomposites. Cereal Chemistry , 2006, 83(3): 300–305
[24] Treece M A, Oberhauser J P. Processing of polypropylene–clay nanocomposites: Single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screw extrusion. Journal of Applied Polymer Science , 2007, 103(2): 884–892
[25] Sridhar R, Narasimha Murthy H N, Pattar N, . Parametric study of twin screw extrusion for dispersing MMT in vinylester using orthogonal array technique and grey relational analysis. Composites Part B: Engineering , 2012, 43(2): 599–608
[26] Vishnu Mahesh K R, Narasimha Murthy H N, Kumara Swamy B E, . Mechanical, thermal and fire retardation behaviors of nanoclay/vinylester nanocomposites. Frontiers of Materials Science , 2011, 5(4): 401–411
[27] Pal R, Narasimha Murthy H N, Sreejith M, . Effect of laminate thickness on moisture diffusion of polymer matrix composites in artificial seawater ageing. Frontiers of Materials Science , 2012, 6(3): 225–235
[28] Herzog B, Gardner D J, Lopez-Anido R, . Glass-transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. Journal of Applied Polymer Science , 2005, 97(6): 2221–2229
AI Summary AI Mindmap
PDF(454 KB)

Accesses

Citations

Detail

Sections
Recommended

/