Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites

N. RAGHAVENDRA1, H. N. NARASIMHA MURTHY2(), M. KRISHNA2, K. R. VISHNU MAHESH3, R. SRIDHAR2, S. FIRDOSH2, G. ANGADI2, S. C. SHARMA4

Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 396-404.

PDF(454 KB)
PDF(454 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 396-404. DOI: 10.1007/s11706-013-0224-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites

  • N. RAGHAVENDRA1, H. N. NARASIMHA MURTHY2(), M. KRISHNA2, K. R. VISHNU MAHESH3, R. SRIDHAR2, S. FIRDOSH2, G. ANGADI2, S. C. SHARMA4
Author information +
History +

Abstract

The aim of the research was to examine the influence of organo-modified Indian bentonite (IB) nanoclay dispersed in vinylester on the mechanical properties of nanoclay/vinylester/glass nanocomposites. Nanoclay was organically modified using cationic surfactant hexadecyltrimethylammonium bromide (HDTMA--Br) by cation exchange method and dispersed in vinylester using ultrasonication and twin screw extrusion. XRD of nanoclay/vinylester revealed exfoliation at 4 wt.% nanoclay indicating uniform dispersion in the polymer. DSC results showed improvement in glass transition temperature by 22.3% in 4 wt.% nanoclay/vinylester/glass when compared with that of vinylester/glass. Nanoclay/vinylester/glass with 4 wt.% nanoclay showed 29.23%, 23.84% and 60.87% improvement in ultimate tensile strength (UTS), flexural strength (FS) and interlaminar shear strength (ILSS) respectively when compared with those of vinylester/glass. The mode of tensile failure examined by SEM showed no agglomeration of nanoclay in 4 wt.% nanoclay/vinylester/glass specimens.

Keywords

Indian bentonite (IB) / ultrasonication / twin-screw extrusion / mechanical property

Cite this article

Download citation ▾
N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites. Front Mater Sci, 2013, 7(4): 396‒404 https://doi.org/10.1007/s11706-013-0224-6

References

[1] Ratna D, Khan S, Barman S, . Synthesis of vinylester–clay nanocomposites: influence of the nature of clay on mechanical, thermal and barrier properties. The Open Macromolecules Journal , 2012, 6: 59–67
[2] Ji G, Li G.Effects of nanoclay morphology on the mechanical, thermal, and fire-retardant properties of vinyl ester based nanocomposites. Materials Science and Engineering A , 2008, 498(1-2): 327–334
[3] Jeon I-Y, Baek J-B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials , 2010, 3(6): 3654–3674
[4] Karippal J J, Narasimha Murthy H N, Rai K S, . Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polymer Bulletin , 2010, 65(8): 849–861
[5] Karippal J J, Narasimha Murthy H N, Rai K S, . Electrical and thermal properties of twin-screw extruded multiwalled glass nanotube/epoxy composites. Journal of Materials Engineering and Performance , 2010, 19(8): 1143–1149
[6] Hwang T Y, Kim H J, Ahn Y. Influence of twin screw extrusion processing condition on the properties of polypropylene/multi-walled glass nanotube nanocomposites. Korea-Australia Rheology Journal , 2010, 22(2): 141–148
[7] Uddin M F, Sun C T. Effect of nanoparticle dispersion on mechanical behavior of polymer nanocomposites. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , Palm Springs, California, USA, May4-7, 2009
[8] See S C, Zhang Z Y, Dhakal H N, . Nanomechanical behavior and thermal degradation of nanoclays and supernanoclays enhanced marine gelcoat system. International Journal of Materials Engineering Innovation , 2009, 1(1): 21–39
[9] Zhao Z, Gou J, Bietto S, . Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Composites Science and Technology , 2009, 69(13): 2081–2087
[10] Villmow T, Potschke P, Pegel S, . Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer , 2008, 49(16): 3500–3509
[11] Samyn F, Bourbigot S, Jama C, . Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology? Polymer Degradation and Stability , 2008, 93(11): 2019–2024
[12] Bhat G, Hegde R R, Kamath M G, . Nanoclay reinforced fibers and nonwovens. Journal of Engineered Fibers and Fabrics , 2008, 3(3): 22–34
[13] Jo B-W, Park S-K, Kim D-K. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Construction and Building Materials , 2008, 22(1): 14–20
[14] Subramaniyan A K, Sun C T. Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness. Composites Part A: Applied Science and Manufacturing , 2007, 38(1): 34–43
[15] Wang L, Wang K, Chen L, . Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing , 2006, 37(11): 1890–1896
[16] Xu B, Zheng Q, Song Y, . Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers. Polymer , 2006, 47(8): 2904–2910
[17] Yasmin A, Luo J J, Daniel I M. Processing of expanded graphite reinforced polymer nanocomposites. Composites Science and Technology , 2006, 66(9): 1182–1189
[18] Ray D, Sengupta S, Sengupta S P, . Preparation and properties of vinylester resin/clay nanocomposites. Macromolecular Materials and Engineering , 2006, 291(12): 1513–1520
[19] Yasmin A, Luo J J, Abot J L, . Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology , 2006, 66(14): 2415–2422
[20] Kosmidou Th V, Vatalis A S, Delides C G, . Structural, mechanical and electrical characterization of epoxy–amine/glass black nanocomposites. eXPRESS Polymer Letters , 2008, 2(5): 364–372
[21] Subramaniyan A K, Sun C T. Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. Journal of Composite Materials , 2008, 42(20): 2111–2122
[22] Kanny K, Jawahar P, Moodley V K. Mechanical and tribulogicla behaviour of clay-polypropylene nanocomposites. Journal of Materials Science , 2008, 43(22): 7230–7238
[23] Chiou B-S, Yee E, Wood D, . Effects of processing conditions on nanoclay dispersion in starch-clay nanocomposites. Cereal Chemistry , 2006, 83(3): 300–305
[24] Treece M A, Oberhauser J P. Processing of polypropylene–clay nanocomposites: Single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screw extrusion. Journal of Applied Polymer Science , 2007, 103(2): 884–892
[25] Sridhar R, Narasimha Murthy H N, Pattar N, . Parametric study of twin screw extrusion for dispersing MMT in vinylester using orthogonal array technique and grey relational analysis. Composites Part B: Engineering , 2012, 43(2): 599–608
[26] Vishnu Mahesh K R, Narasimha Murthy H N, Kumara Swamy B E, . Mechanical, thermal and fire retardation behaviors of nanoclay/vinylester nanocomposites. Frontiers of Materials Science , 2011, 5(4): 401–411
[27] Pal R, Narasimha Murthy H N, Sreejith M, . Effect of laminate thickness on moisture diffusion of polymer matrix composites in artificial seawater ageing. Frontiers of Materials Science , 2012, 6(3): 225–235
[28] Herzog B, Gardner D J, Lopez-Anido R, . Glass-transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. Journal of Applied Polymer Science , 2005, 97(6): 2221–2229
AI Summary AI Mindmap
PDF(454 KB)

Accesses

Citations

Detail

Sections
Recommended

/