Energy investigations on the mechanical properties of magnesium alloyed by X= C, B, N, O and vacancy

Xiao-Zhi WU1,2,3(), Li-Li LIU3, Rui WANG3, Li-Yong GAN4, Qing LIU1,2

PDF(380 KB)
PDF(380 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 405-412. DOI: 10.1007/s11706-013-0221-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Energy investigations on the mechanical properties of magnesium alloyed by X= C, B, N, O and vacancy

  • Xiao-Zhi WU1,2,3(), Li-Li LIU3, Rui WANG3, Li-Yong GAN4, Qing LIU1,2
Author information +
History +

Abstract

The generalized stacking fault (GSF) energies and surface energies of magnesium and its alloys with alloying atoms X= C, B, N, O and vacancy have been investigated using the first-principles methods. It is found that the predominant reducing effects of the alloying atoms and vacancy on the stacking fault energy are resulted from the position of them in the 1st layer near the slip plane. The stacking fault energies are nearly the same as the pure magnesium while the alloying atoms and vacancy are placed in the 2nd, 3rd, 4th, 5th and 6th layers. It has been shown that O strongly reduces the GSF energy of Mg. The alloying atoms C, B and N increase the surface energy, but O and vacancy reduce the surface energy of Mg. The ductilities of Mg and Mg alloys have been discussed based on the Rice criterion by using the ratio between surface energy and unstable stacking fault energy.

Keywords

magnesium / stacking fault energy / surface energy / Rice criterion

Cite this article

Download citation ▾
Xiao-Zhi WU, Li-Li LIU, Rui WANG, Li-Yong GAN, Qing LIU. Energy investigations on the mechanical properties of magnesium alloyed by X= C, B, N, O and vacancy. Front Mater Sci, 2013, 7(4): 405‒412 https://doi.org/10.1007/s11706-013-0221-9

References

[1] Mordike B L, Ebert T. Magnesium: Properties–applications–potential. Materials Science and Engineering A , 2001, 302(1): 37–45
[2] Waghmare U V, Bulatov V, Kaxiras E, . Microalloying for ductility in molybdenum disilicide. Materials Science and Engineering A , 1999, 261(1–2): 147–157
[3] Rice J R, Beltz G E. The activation energy for dislocation nucleation at a crack. Journal of the Mechanics and Physics of Solids , 1994, 42(2): 333–360
[4] Lu G, Zhang Q, Kioussis N, . Hydrogen-enhanced local plasticity in aluminum: an ab initio study. Physical Review Letters , 2001, 87(9): 095501 (4 pages)
[5] Lu G, Kaxiras E. Can vacancies lubricate dislocation motion in aluminum? Physical Review Letters , 2002, 89(10): 105501 (4 pages)
[6] Lu G, Orlikowski D, Park I, . Energetics of hydrogen impurities in aluminum and their effect on mechanical properties. Physical Review B: Condensed Matter and Materials Physics , 2002, 65(6): 064102 (8 pages)
[7] Kibey S, Liu J B, Johnson D D, . Generalized planar fault energies and twinning in Cu–Al alloys. Applied Physics Letters , 2006, 89(19): 191911 (3 pages)
[8] Qi Y, Mishra R K. Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum. Physical Review B: Condensed Matter and Materials Physics , 2007, 75(22): 224105 (5 pages)
[9] Muzyk M, Pakiela Z, Kurzydlowski K J. Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scripta Materialia , 2011, 64(9): 916–918
[10] Siegel D J. Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Applied Physics Letters , 2005, 87(12): 121901 (3 pages)
[11] Yu X-X, Wang C-Y. The effect of alloying elements on the dislocation climbing velocity in Ni: A first-principles study. Acta Materialia , 2009, 57(19): 5914–5920
[12] Chandran M, Sondhi S K. First-principle calculation of stacking fault energies in Ni and Ni–Co alloy. Journal of Applied Physics , 2011, 109(10): 103525 (6 pages)
[13] Schusteritsch G, Kaxiras E. Sulfur-induced embrittlement of nickel: a first-principles study. Modelling and Simulation in Materials Science and Engineering , 2012, 20(6): 065007
[14] Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten. Physical Review Letters , 2010, 104(19): 195503 (4 pages)
[15] Datta A, Waghmare U V, Ramamurty U. Structure and stacking faults in layered Mg–Zn–Y alloys: A first-principles study. Acta Materialia , 2008, 56(11): 2531–2539
[16] Han J, Su X M, Jin Z H, . Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scripta Materialia , 2011, 64(8): 693–696
[17] Wang H Y, Zhang N, Wang C, . First-principles study of the generalized stacking fault energy in Mg–3Al–3Sn alloy. Scripta Materialia , 2011, 65(8): 723–726
[18] Fan T W, Tang B Y, Peng L M, . First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium. Scripta Materialia , 2011, 64(10): 942–945
[19] Yasi J A, Hector L G Jr, Trinkle D R. Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data. Acta Materialia , 2011, 59(14): 5652–5660
[20] Sandlobes S, Friak M, Zaefferer S, . The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Materialia , 2012, 60(6–7): 3011–3021
[21] Muzyk M, Pakiela Z, Kurzydlowski K. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scripta Materialia , 2012, 66(5): 219–222
[22] Zhang Q, Fan T-W, Fu L, . Ab-initio study of the effect of rare-earth elements on the stacking faults of Mg solid solutions. Intermetallics , 2012, 29: 21–26
[23] Domain C. Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. Journal of Nuclear Materials , 2006, 351(1–3): 1–19
[24] Lazar P, Podloucky R. Ab initio study of the mechanical properties of NiAl microalloyed by X= Cr, Mo, Ti, Ga. Physical Review B: Condensed Matter and Materials Physics , 2006, 73(10): 104114 (8 pages)
[25] Jiang C, Sordelet D J, Gleeson B. A first-principles study of the site preference of Cr in B2 NiAl. Scripta Materialia , 2006, 54(3): 405–410
[26] Hu X-L, Liu L-H, Zhang Y, . Energy investigation of effects of O on mechanical properties of NiAl intermetallics. Journal of Physics: Condensed Matter , 2011, 23(2): 025501
[27] Yu X-X, Wang C-Y. The effects of alloying elements on generalized stacking fault energies, strength and ductility of γ′-Ni3Al. Materials Science and Engineering A , 2012, 539: 38–41
[28] Kibey S, Liu J B, Curtis M J, . Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels. Acta Materialia , 2006, 54(11): 2991–3001
[29] Vitos L, Nilsson J O, Johansson B. Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Materialia , 2006, 54(14): 3821–3826
[30] Abbasi A, Dick A, Hickel T, . First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Materialia , 2011, 59(8): 3041–3048
[31] Liu J, Han P D, Dong M H, . Influence of Ni and N on generalized stacking-fault energies in Fe–Cr–Ni alloy: A first principle study. Physica B: Condensed Matter , 2012, 407(5): 891–895
[32] Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B: Condensed Matter and Materials Physics , 1993, 48(17): 13115–13118
[33] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science , 1996, 6(1): 15–50
[34] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics , 1996, 54(16): 11169–11186
[35] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters , 1996, 77(18): 3865–3868
[36] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters , 1997, 78(7): 1396
[37] Blochl P E. Projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics , 1994, 50(24): 17953–17979
[38] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics , 1999, 59(3): 1758–1775
[39] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B: Condensed Matter and Materials Physics , 1976, 13(12): 5188–5192
[40] Ashcroft N W, Mermin N D. Solid State Physics . New York: Holt, Rinehart and Winston Inc. , 1976
[41] Yasi J A, Nogaret T, Trinkle D R, . Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering , 2009, 17(5): 055012
[42] Smith A E. Surface, interface and stacking fault energies of magnesium from first principles calculations. Surface Science , 2007, 601(24): 5762–5765
[43] Uesugi T, Kohyama M, Kohzu M, . Ab initio calculation on the structure and elastic properties of a magnesium–lithium alloy. Materials Science Forum , 2003, 225: 419–422
[44] Legrand P B. Structure du coeur des dislocations vis 1/3?112 ˉ0?dans le titane. Philosophical Magazine A , 1985, 52(1): 83–97
[45] Couret A, Caillard D. An in situ study of prismatic glide in magnesium — II. Microscopic activation parameters. Acta Metallurgica , 1985, 33(8): 1455–1462
[46] Fleischer R L. Stacking fault energies of HCP metals. Scripta Metallurgica , 1986, 20(2): 223–224
[47] Devlin J F. Stacking fault energies of Be, Mg, Al, Cu, Ag, and Au. Journal of Physics F: Metal Physics , 1974, 4(11): 1865–1882
[48] Fu B-Q, Liu W, Li Z-L. Calculation of the surface energy of hcp-metals with the empirical electron theory. Applied Surface Science , 2009, 255(23): 9348–9357
[49] Wachowicz E, Kiejna A. Bulk and surface properties of hexagonal-close-packed Be and Mg. Journal of Physics: Condensed Matter , 2001, 13(48): 10767–10776
[50] Green A K, Bauer E. Work function and purity of the Beryllium (0001) surface. Surface Science , 1978, 74(3): 676–681
[51] Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philosophical Magazine , 1968, 18(154): 773–786
[52] Vitek V. Theory of the core structures of dislocations in BCC metals. Crystal Lattice Defects , 1974, 5: 1
[53] Thomson R. Physical Review B: Condensed Matter and Materials Physics , 1995, 52: 7214
[54] Sun Y, Kaxiras E. Slip energy barriers in aluminium and implications for ductile-brittle behaviour. Philosophical Magazine A , 1997, 75(4): 1117–1127
[55] Rose J H, Smith J R, Guinea F, . Universal features of the equation of state of metals. Physical Review B: Condensed Matter and Materials Physics , 1984, 29(6): 2963–2969
[56] Waghmare U V, Bulatov V, Kaxiras E, . Microalloying for ductility in molybdenum disilicide. Materials Science and Engineering A , 1999, 261(1–2): 147–157
AI Summary AI Mindmap
PDF(380 KB)

Accesses

Citations

Detail

Sections
Recommended

/