The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method

Diah SUSANTI1(), Rizky Narendra Dwi WIBAWA1, Lucky TANANTA1, Hariyati PURWANINGSIH1, Rindang FAJARIN1, George Endri KUSUMA2

PDF(485 KB)
PDF(485 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 370-378. DOI: 10.1007/s11706-013-0220-x
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method

  • Diah SUSANTI1(), Rizky Narendra Dwi WIBAWA1, Lucky TANANTA1, Hariyati PURWANINGSIH1, Rindang FAJARIN1, George Endri KUSUMA2
Author information +
History +

Abstract

Electrochemical capacitor (EC) is a promising energy storage device which can be hybridized with other energy conversion or energy storage devices. One type of ECs is pseudocapacitor made of metal oxides. WO3 is an inexpensive semiconductor metal oxide which has many applications. However the application of WO3 as an EC material was rarely reported. Therefore in this research EC was prepared from WO3 nanomaterial synthesized by a sol--gel process. The WO3 gel was spin-coated on graphite substrates and calcined at various temperatures of 300°C, 400°C, 500°C and 600°C for 1 h. Cyclic voltammetry (CV) measurements were used to observe the capacitive property of the WO3 samples. SEM, XRD, FTIR and Brunauer--Emmett--Teller (BET) analyses were used to characterize the material structures. WO3 calcined at 400°C was proved to have the highest capacitance of 233.63 F●?g--1 (1869 mF●?cm--2) at a scan rate of 2 mV●?s--1 in 1 mol/L H2SO4 between potentials--0.4 and 0.4 V vs. SCE. Moreover it also showed the most symmetric CV curves as the indication of a good EC. Hence WO3 calcined at 400°C is a potential candidate for EC material of pseudocapacitor type.

Keywords

electrochemical capacitor (EC) / WO3 nanomaterial / sol--gel process / calcination

Cite this article

Download citation ▾
Diah SUSANTI, Rizky Narendra Dwi WIBAWA, Lucky TANANTA, Hariyati PURWANINGSIH, Rindang FAJARIN, George Endri KUSUMA. The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method. Front Mater Sci, 2013, 7(4): 370‒378 https://doi.org/10.1007/s11706-013-0220-x

References

[1] Brodd R J. Recent advances in electrochemical capacitors. Proceedings of the International Conference on Advanced Capacitors (ICAC 2007), Kyoto-Japan , 2007, 1
[2] Miller J R, Simon P.Fundamentals of electrochemical capacitor design and operation. Interface , 2008, 17(1): 31-32
[3] K?tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta , 2000, 45(15-16): 2483-2498
[4] Burke A F. Ultracapacitor technologies and applications in hybrid and electric vehicles. Research Report UCD-ITS-RR-09-23. University of California Davis, Institute of Transportation Studies , 2009, 1-27
[5] Long J W. Opportunities of electrochemical capacitors as energy storage solutions in future navy and marine corps missions. Memorandum Report NRL/MR/6170-09-9227. Washington DC: Naval Research Laboratory, US Navy , 2009, 1-30
[6] Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications . New York: Kluwer Academic/Plenum Publisher , 1999, 221
[7] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium dioxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society , 1995, 142(8): 2699-2703
[8] Sugimoto W, Kizaki T, Yokoshima K, . Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta , 2004, 49(2): 313-3 20
[9] Hu C-C, Chen W-C, Chang K-H. How to achieve maximum utilization of hydrous ruthenium dioxide for supercapacitors. Journal of the Electrochemical Society , 2004, 151(2): A281-A290
[10] Ke Y-F, Tsai D-S, Huang Y-S. Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates. Journal of Materials Chemistry , 2005, 15(21): 2122-2127
[11] Hu C-C, Chang K-H, Lin M-C, . Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters , 2006, 6(12): 2690-2695
[12] Susanti D, Tsai D-S, Huang Y-S, . Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2. The Journal of Physical Chemistry C , 2007, 111(26): 9530-9537
[13] Susanti D, Tsai D-S, Huang Y-S. Hybrid electrochemical capacitor of IrO2 nanocrystal and hydrous RuO2. Science of Advanced Materials , 2010, 2(4): 552-559
[14] Trasatti S, Buzzanca G.Ruthenium dioxide: a new interesting electrode material, solid state structure and electrochemical behavior. Journal of Electroanalytical Chemistry , 1971, 29(1): 1-5
[15] Yano M, Suzuki S, Miyayama M, . Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics , 2013, 233: 32-37
[16] Engstrom A M, Doyle F M. Exploring the cycle behavior of electrodeposited vanadium oxide electrochemical capacitor electrodes in various aqueous environments. Journal of Power Sources , 2013, 228: 120-131
[17] Dubal D P, Dhawale D S, Salunkhe R R, . A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. Journal of Electroanalytical Chemistry , 2010, 647(1): 60-65
[18] Chang K-H, Hu C-C, Huang C-M, . Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources , 2011, 196(4): 2387-2392
[19] Wang S H, Chou T C, Liu C C. Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators B: Chemical , 2003, 94(3): 343-351
[20] Yan A, Xie C, Zeng D, . Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire netted-spheres. Materials Research Bulletin , 2010, 45(10): 1541-1547
[21] Deepa M, Singh P, Sharma S N, . Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials and Solar Cells , 2006, 90(16): 2665-2682
[22] Sun Y, Murphy C J, Reyes-Gil K R, . Photochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy , 2009, 34(20): 8476-8484
[23] Ozkan E, Lee S H, Liu P, . Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics , 2002, 149(1-2): 139-146
[24] Su L, Lu Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. Journal of Physics and Chemistry of Solids , 1998, 59(8): 1175-1180
[25] Susanti D, Stefanus Haryo N, Nisfu H, . Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment. Frontiers of Chemical Science and Engineering , 2012, 6(4): 371-380
[26] Szilágyi I M, Madarász J, Pokol G, . Stability and controlled composition of hexagonal WO3. Chemistry of Materials , 2008, 20(12): 4116-4125
[27] Ramana C V, Utsunomiya S, Ewing R C, . Structural stability and phase transitions in WO3 thin films. The Journal of Physical Chemistry B , 2006, 110(21): 10430-10435
[28] Chatten R, Chadwick A V, Rougier A, . The oxygen vacancy in crystal phases of WO3. The Journal of Physical Chemistry B , 2005, 109(8): 3146-3156
[29] Daniel M F, Desbat B, Lassegues J C, . Infrared and Raman study of WO3 tungsten trioxide and WO3·xH2O tungsten trioxide hydrate. Journal of Solid State Chemistry , 1987, 67(2): 235-247
[30] Lister T E, Chu Y, Cullen W, . Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces. Journal of Electroanalytical Chemistry , 2002, 524-525: 201-218
[31] Granqvist C G. Electrochromic tungsten oxide films: Review of progress 1993-1998. Solar Energy Materials and Solar Cells , 2000, 60(3): 201-262
[32] Kim D-J, Pyun S-I, Pyun Y-M. A study on the hydrogen intercalation into rf-magnetron sputtered amorphous WO3 film using cyclic voltammetry combined with electrochemical quartz crystal microbalance technique. Solid State Ionics , 1998, 109(1-2): 81-87
[33] Dmowski W, Egami T, Swider-Lyons K E, . Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. The Journal of Physical Chemistry B , 2002, 106(49): 12677-12683
AI Summary AI Mindmap
PDF(485 KB)

Accesses

Citations

Detail

Sections
Recommended

/