Electrical conductivity of Gd doped BiFeO3---PbZrO3 composite

Santosh Kumar SATPATHY, Nilaya Kumar MOHANTY, Ajay Kumar BEHERA, Banarji BEHERA(), Pratibindhya NAYAK

PDF(370 KB)
PDF(370 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (3) : 295-301. DOI: 10.1007/s11706-013-0215-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrical conductivity of Gd doped BiFeO3---PbZrO3 composite

  • Santosh Kumar SATPATHY, Nilaya Kumar MOHANTY, Ajay Kumar BEHERA, Banarji BEHERA(), Pratibindhya NAYAK
Author information +
History +

Abstract

The composite, 0.5(BiGd0.15Fe0.85O3)---0.5(PbZrO3), was synthesized using the solid-state reaction technique. The formation of the compound was confirmed by XRD with an orthorhombic structure at room temperature. The impedance parameters were studied using an impedance analyzer in a wide range of frequency (102---106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect and a slight indication of grain boundary effect and the bulk resistance decreases with a rise in temperature. The presence of temperature-dependent relaxation process occurs in the material. Electrical modulus reveals the presence of the hopping mechanism in the materials. The value of exponent n, pre-factor A and σdc were obtained by fitting ac conductivity data with Jonscher’s universal power law. The activation energies calculated from the ac conductivity were found to be 0.50, 0.46, 0.44, 0.43, 0.42 and 0.38 eV at 1, 10, 50, 100, 500 kHz and 1 MHz respectively in the temperature region of 110°C---350°C. The dc conductivity was found to increase with the rise in temperature. The activation energy calculated from complex impedance plot and from the fitted Jonscher’s power law are very close, which results similar type of charge carrier exist in conduction mechanism of the material.

Keywords

solid state reaction / XRD / impedance / electrical conductivity

Cite this article

Download citation ▾
Santosh Kumar SATPATHY, Nilaya Kumar MOHANTY, Ajay Kumar BEHERA, Banarji BEHERA, Pratibindhya NAYAK. Electrical conductivity of Gd doped BiFeO3---PbZrO3 composite. Front Mater Sci, 2013, 7(3): 295‒301 https://doi.org/10.1007/s11706-013-0215-7

References

[1] Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B: Structural Science , 1990, 46(6): 698-702
[2] Kiselev S V, Ozerov R P, Zhdanov G S. Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Soviet Physics Doklady , 1963, 7(8): 742 -744
[3] Spaldin N A, Cheong S W, Ramesh R. Multiferroics: Past, present, and future. Physics Today , 2010, 63(10): 38-43
[4] Catalan G. On the link between octahedral rotations and conductivity in the domain walls of BiFeO3. Ferroelectrics , 2012, 433(1): 65-73
[5] Maksymovych P, Seidel J, Chu Y H, . Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Letters , 2011, 11(5): 1906-1912
[6] Catalan G, Scott J F. Physics and applications of bismuth ferrite. Advanced Materials , 2009, 21(24): 2463-2485
[7] Sawaguchi E, Shirane G, Takagi Y. Phase transition in lead zirconate. Journal of the Physical Society of Japan , 1951, 6(5): 333-339
[8] Shirane G, Sawaguchi E, Takagi Y. Dielectric properties of lead zirconate. Physical Review , 1951, 84(3): 476-481
[9] Sengupta S S, Roberts D, Li J F, . Field-induced phase switching and electrically driven strains in sol-gel derived antiferroelectric (Pb,Nb)(Zr,Sn,Ti)O3 thin layers. Journal of Applied Physics , 1995, 78(2): 1171-1177
[10] Xu B, Moses P, Pai N G, . Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Applied Physics Letters , 1998, 72(5): 593-595
[11] Yamakawa K, Trolier-McKinstry S, Dougherty J P, . Reactive magnetron co-sputtered antiferroelectric lead zirconate thin films. Applied Physics Letters , 1995, 67(14): 2014-2016
[12] Seveno R, Gundel H W, Seifert S. Preparation of antiferroelectric PbZrxTi1-xO3 thin films on LaSrMnO3-coated steel substrates. Applied Physics Letters , 2001, 79(25): 4204-4206
[13] Jang J H, Yoon K H, Shin H J. Electric fatigue in sol-gel prepared Pb(Zr,Sn,Ti)NbO3 thin films. Applied Physics Letters , 1998, 73(13): 1823-1825
[14] Xu B, Ye Y, Cross L E. Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. Journal of Applied Physics , 2000, 87(5): 2507-2515
[15] Ketsuwan P, Prasatkhetragarn A, Triamnuk N, . Electrical conductivity and dielectric and ferroelectric properties of chromium doped lead zirconate titanate ceramic. Ferroelectrics , 2009, 382(1): 49-55
[16] Parui J, Krupanidhi S B. Dielectric properties of (110) oriented PbZrO3 and La-modified PbZrO3 thin films grown by sol-gel process on Pt(111)/Ti/SiO2/Si substrate. Journal of Applied Physics , 2006, 100(4): 044102 (9 pages)
[17] Rao B U M, Srinivasan G, Babu V S, . Magnetic properties of amorphous BiFeO3-PbZrO3 sputtered films. Journal of Applied Physics , 1991, 69(8): 5463-5465
[18] Gerson R, Chout P C, James W J. Ferroelectric properties of PbZrO3-BiFeO3 solid solutions. Journal of Applied Physics , 1967, 38(1): 55-60
[19] Koizumi H, Niizeki N, Ikeda T. An X-ray study on Bi2O3-Fe2O3 system. Japanese Journal of Applied Physics , 1964, 3(8): 495-496
[20] Wu E. POWD, an interactive powder diffraction data interpretation and indexing. Journal of Applied Crystallography , 1989, 22(5): 506-510
[21] Scherrer P. Scherrer equation. G?ttinger Nachrichten , 1918, 2: 98-100
[22] Hodge I M, Ingram M D, West A R. Impedance and Modulus spectroscopy of polycrystalline solid electrolytes. Journal of Electroanalytical Chemistry , 1976, 74(2): 125-143
[23] James A R, Srinivas K. Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Materials Research Bulletin , 1999, 34(8): 1301-1310
[24] Suman C K, Prasad K, Choudhary R N P. Complex impedance studies of tungsten-bronze electroceramics: Pb2Bi3LaTi5O18. Journal of Materials Science , 2006, 41(2): 369-375
[25] Suman C K, Prasad K, Choudhary R N P. Impedance spectroscopic studies of ferroelectric Pb2Sb3DyTi5O18 ceramic. Advances in Applied Ceramics , 2005, 104(6): 294-299
[26] Behera A K, Mohanty N K, Behera B, . Impedance properties of 0.7(BiFeO3)-0.3(PbTiO3) composite. Advanced Materials Letters , 2013, 4(2): 141-145
[27] Behera B, Nayak P, Choudhary R N P. Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Materials Chemistry and Physics , 2007, 106(2-3): 193-197
[28] Sinclair D C, West A R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. Journal of Applied Physics , 1989, 66(8): 3850-3856
[29] Jonscher A K. The ‘universal’ dielectric response. Nature , 1977, 267(5613): 673-679
[30] Mahamoud H, Louati B, Hlel F, . Conductivity and dielectric studies on (Na0·4Ag0·6)2PbP2O7 compound. Bulletin of Materials Science , 2011, 34(5): 1069-1075
[31] Meng L J, Andritschky M, dos Santos M P. Zinc oxide films prepared by dc reactive magnetron sputtering at different substrate temperatures. Vacuum , 1994, 45(1): 19-22
AI Summary AI Mindmap
PDF(370 KB)

Accesses

Citations

Detail

Sections
Recommended

/