[1] Nicol S, Hosie G W. Chitin production by krill.
Biochemical Systematics and Ecology , 1993, 21(2): 181–184
[2] Wang Y, Chang Y, Yu L,
. Crystalline structure and thermal property characterization of chitin from Antarctic krill (
Euphausia superba).
Carbohydrate Polymers , 2013, 92(1): 90–97
[3] Ehrlich H.
Biological Materials of Marine Origin: Invertebrates .
Dordrecht, the Netherlands:
Springer, 2010
[4] Goodrich J D, Winter W T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement.
Biomacromolecules , 2007, 8(1): 252–257
[5] Sajomsang W, Gonil P. Preparation and characterization of α-chitin from cicada sloughs.
Materials Science and Engineering C , 2010, 30(3): 357–363
[6] Lease H M, Wolf B O. Exoskeletal chitin scales isometrically with body size in terrestrial insects.
Journal of Morphology , 2010, 271(6): 759–768
[7] Ehrlich H, Ilan M, Maldonado M,
. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.
International Journal of Biological Macromolecules , 2010, 47(2): 132–140
[8] Ehrlich H, Steck E, Ilan M,
. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.
International Journal of Biological Macromolecules , 2010, 47(2): 141–145
[9] Ehrlich H, Maldonado M, Spindler K D,
. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera).
Journal of Experimental Zoology Part B: Molecular and Developmental Evolution , 2007, 308B(4): 347–356
[10] Ehrlich H, Krautter M, Hanke T,
. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera).
Journal of Experimental Zoology Part B: Molecular and Developmental Evolution , 2007, 308B(4): 473–483
[11] Brunner E, Ehrlich H, Schupp P,
. Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge
Ianthella basta.
Journal of Structural Biology , 2009, 168(3): 539–547
[12] Ehrlich H, Simon P, Carrillo-Cabrera W,
. Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges.
Chemistry of Materials , 2010, 22(4): 1462–1471
[13] Ehrlich H, Janussen D, Simon P,
. Nanostructural organization of naturally occurring composites - part II: silica-chitin-based biocomposites.
Journal of Nanomaterials , 2008, 54 (8 pages)
[14] Ehrlich H, Kaluzhaya O V, Tsurkan M V,
. First report on chitinous holdfast in sponges (Porifera).
Proceedings of the Royal Society B , 2013, 280: 1762
[15] Ehrlich H, Deutzmann R, Brunner E,
. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen.
Nature Chemistry , 2010, 2(12): 1084–1088
[16] Alonso B, Belamie E. Chitin-silica nanocomposites by self-assembly.
Angewandte Chemie International Edition , 2010, 49(44): 8201–8204
[17] Belamie E, Boltoeva M Y, Yang K,
. Tunable hierarchical porosity from self-assembled chitin-silica nano-composites.
Journal of Materials Chemistry , 2011, 21(42): 16997–17006
[18] Copello G J, Mebert A M, Raineri M,
. Removal of dyes from water using chitosan hydrogel/SiO
2 and chitin hydrogel/SiO
2 hybrid materials obtained by the sol-gel method.
Journal of Hazardous Materials , 2011, 186(1): 932–939
[19] Wan K, Peng X H, Du P J. Chitin/TiO
2 composite for photocatalytic degradation of phenol.
Advanced Materials Research , 2010, 132: 105–110
[20] Jayakumar R, Ramachandran R, Divyarani V V,
. Fabrication of chitin-chitosan/nano TiO
2-composite scaffolds for tissue engineering applications.
International Journal of Biological Macromolecules , 2011, 48(2): 336–344
[21] Jayakumar R, Ramachandran R, Sudheesh Kumar P T,
. Fabrication of chitin-chitosan/nano ZrO
2 composite scaffolds for tissue engineering applications.
International Journal of Biological Macromolecules , 2011, 49(3): 274–280
[22] Di Giuseppe A, Crusianelli M, Passacantado M,
. Chitin- and chitosan-anchored methyltrioxorhenium: An innovative approach for selective heterogenous catalytic epoxidations of olefins.
Journal of Catalysis , 2010, 276(2): 412–422
[23] Madhumathi K, Sudheesh Kumar P T, Kavya K C,
. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications.
International Journal of Biological Macromolecules , 2009, 45(3): 289–292
[24] Kumar P T, Lakshmanan V K, Biswas R,
. Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing.
Journal of Biomedical Nanotechnology , 2012, 8(6): 891–900
[25] Kumar P T, Srinivasan S, Lakshmanan V K,
. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds.
International Journal of Biological Macromolecules , 2011, 49(1): 20–31
[26] Ogasawara W, Shenton W, Davis S A,
. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix.
Chemistry of Materials , 2000, 12(10): 2835–2837
[27] Spinde K, Kammer M, Freyer K,
. Biomimetic silicification of fibrous chitin from diatoms.
Chemistry of Materials , 2011, 23(11): 2973–2978
[28] Byrappa K, Yoshimura M.
Handbook of Hydrothermal Technology - A Technology for Crystal Growth and Materials Processing .
New York, USA:
William Andrew Publishing LLC, 2001
[29] Byrappa K, Adschiri T. Hydrothermal Technology for nanotechnology.
Progress in Crystal Growth and Characterization of Materials , 2007, 53(2): 117–166
[30] Yoshimura M, Byrappa K. Hydrothermal processing of materials: past, present and future.
Journal of Materials Science , 2008, 43(7): 2085–2103
[31] Riman R E, Suchanek W L, Lencka M M. Hydrothermal crystallization of ceramics.
Annales de Chimie Science des Materiaux , 2002, 27(6): 15–36
[32] Suchanek W L, Riman R E. Hydrothermal synthesis of advanced ceramic powders.
Advances in Science and Technology , 2006, 45: 184–193
[33] Djurisi? A B, Xi Y Y, Hsu Y F,
. Hydrothermal synthesis of nanostructures.
Recent Patents on Nanotechnology , 2007, 1(2): 121–128
[34] Mao Y, Park T-J, Zhang F,
. Environmentally friendly methodologies of nanostructure synthesis.
Small , 2007, 3(7): 1122–1139
[35] Stawski D, Rabiej S, Herczynska L,
. Thermo-gravimetric analysis of chitins of different origin.
Journal of Thermal Analysis and Calorimetry , 2008, 93(2): 489–494
[36] Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan.
Polymer Degradation & Stability , 2005, 87(3): 389–394
[37] Arora S, Lal S, Kumar S,
. Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose.
Archives of Applied Science Research , 2001, 3: 188–201
[38] Paulino T A, Simionato J I, Garcia J C,
. Characterization of chitosan and chitin produced from silkworm crysalides.
Carbohydrate Polymers , 2006, 64(1): 98–103
[39] Kolen’ko Y V, Maximov V D, Burukhin A A,
. Synthesis of ZrO
2 and TiO
2 nanocrystalline powders by hydrothermal process.
Materials Science and Engineering C , 2003, 23(6-8): 1033–1038
[40] Di Girolamo G, Marra F, Blasi C,
. Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings.
Ceramics International , 2011, 37(7): 2711–2717
[41] Sumana G, Das M, Srivastava S,
. A novel urea biosensor based on zirconia.
Thin Solid Films , 2010, 519(3): 1187–1191
[42] Zuo S-H, Zhang L-F, Yuan H-H,
. Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode.
Bioelectrochemistry , 2009, 74(2): 223–226
[43] Yang J, Wang X, Shi H. An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film.
Sensors and Actuators B: Chemical , 2012, 162(1): 178–183
[44] Liu B, Hu J, Foord J S. Electrochemical detection of DNA hybridization by zirconia modified diamond electrode.
Electrochemistry Communications , 2012, 19: 46–49
[45] Zhang C, Li C, Yang J,
. Tunable luminescence in monodisperse zirconia spheres.
Langmuir , 2009, 25(12): 7078–7083
[46] Lavall R L, Assis O B G, Campana-Filho S P. β-chitin from the pens of
Loligo sp.: extraction and characterization.
Bioresource Technology , 2007, 98(13): 2465–2472
[47] Schleuter D, Günther A, Paasch S,
. Chitin-based renewable materials from marine sponges for uranium adsorption.
Carbohydrate Polymers , 2013, 92(1): 712–718
[48] Cárdenas G, Cabrera G, Taboada E,
. Chitin characterization by SEM, FTIR, XRD, and
13C cross polarization/mass angle spinning NMR.
Journal of Applied Polymer Science , 2004, 93(4): 1876–1885
[49] Florek M, Fornal E, Gómez-Romero P,
. Complementary microstructural and chemical analyses of
Sepiaofficinalis endoskeleton.
Materials Science and Engineering C , 2009, 29(4): 1220–1226
[50] del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO
2 in ZrO
2-SiO
2 binary oxides.
Journal of the American Ceramic Society , 2000, 83(3): 628–634
[51] Monrós G, Marti M C, Carda J,
. Effect of hydrolysis time and type of catalyst on the stability of tetragonal zirconia-silica composites synthesized from alkoxides.
Journal of Materials Science , 1993, 28(21): 5852–5862
[52] Nouri E, Shahmiri M, Rezaie H R,
. The effect of alumina content on the structural properties of ZrO
2-Al
2O
3 unstabilized composite nanopowders.
International Journal of Industrial Chemistry , 2012, 3: 17 (8 pages)
[53] Song D, Breedveld V, Deng Y. Rheological study, of self-crosslinking and co-crosslinking of ammonium zirconium carbonate and starch in aqueous solutions.
Journal of Applied Polymer Science , 2011, 122(2): 1019–1029
[54] Song D, Zhao Y, Dong C,
. Surface modification of cellulose fibers by starch grafting with crosslinkers.
Journal of Applied Polymer Science , 2009, 113(5): 3019–3026
[55] Rubio E, Rodriguez-Lugo V, Rodriguez R,
. Nanozirconia and sulfated zirconia from ammonia zirconium carbonate.
Reviews on Advanced Materials Science , 2009, 22: 67–73
[56] Mikkonen K S, Schmidt J, Vesterinen A H,
. Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films.
Journal of Materials Science , 2013, 48(12): 4205–4213
[57] Kourieh R, Retailleau L, Bennici S,
. Influence of the acidic properties of ZrO
2 based mixed oxides catalysts in the selective reduction of NO
x with
n-decane.
Catalysis Letters , 2013, 143(1): 74–83
[58] Chen A-J, Wong S-T, Hwang C-C,
. Highly efficient and regioselective halogenation over well dispersed rhenium-promoted mesoporous zirconia.
ACS Catalysis , 2011, 1(7): 786–793
[59] Sarkar D, Swain S K, Adhikari S,
. Synthesis, mechanical properties and bioactivity of nanostructured zirconia.
Materials Science and Engineering C , 2013, 33(6): 3413–3417