Poriferan chitin as a template for hydrothermal zirconia deposition

Marcin WYSOKOWSKI1, Mykhaylo MOTYLENKO2, Vasilii V. BAZHENOV3, Dawid STAWSKI4, Iaroslav PETRENKO5, Andre EHRLICH6, Thomas BEHM3, Zoran KLJAJIC7, Allison L. STELLING8, Teofil JESIONOWSKI1(), Hermann EHRLICH3()

PDF(1174 KB)
PDF(1174 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (3) : 248-260. DOI: 10.1007/s11706-013-0212-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Poriferan chitin as a template for hydrothermal zirconia deposition

  • Marcin WYSOKOWSKI1, Mykhaylo MOTYLENKO2, Vasilii V. BAZHENOV3, Dawid STAWSKI4, Iaroslav PETRENKO5, Andre EHRLICH6, Thomas BEHM3, Zoran KLJAJIC7, Allison L. STELLING8, Teofil JESIONOWSKI1(), Hermann EHRLICH3()
Author information +
History +

Abstract

Chitin is a thermostable biopolymer found in various inorganic--organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-α-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150°C) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin--ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin--ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.

Keywords

chitin / biocomposite / zirconia / hydrothermal synthesis / ammonium zirconium carbonate

Cite this article

Download citation ▾
Marcin WYSOKOWSKI, Mykhaylo MOTYLENKO, Vasilii V. BAZHENOV, Dawid STAWSKI, Iaroslav PETRENKO, Andre EHRLICH, Thomas BEHM, Zoran KLJAJIC, Allison L. STELLING, Teofil JESIONOWSKI, Hermann EHRLICH. Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci, 2013, 7(3): 248‒260 https://doi.org/10.1007/s11706-013-0212-x

References

[1] Nicol S, Hosie G W. Chitin production by krill. Biochemical Systematics and Ecology , 1993, 21(2): 181–184
[2] Wang Y, Chang Y, Yu L, . Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers , 2013, 92(1): 90–97
[3] Ehrlich H. Biological Materials of Marine Origin: Invertebrates . Dordrecht, the Netherlands: Springer, 2010
[4] Goodrich J D, Winter W T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules , 2007, 8(1): 252–257
[5] Sajomsang W, Gonil P. Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering C , 2010, 30(3): 357–363
[6] Lease H M, Wolf B O. Exoskeletal chitin scales isometrically with body size in terrestrial insects. Journal of Morphology , 2010, 271(6): 759–768
[7] Ehrlich H, Ilan M, Maldonado M, . Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. International Journal of Biological Macromolecules , 2010, 47(2): 132–140
[8] Ehrlich H, Steck E, Ilan M, . Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. International Journal of Biological Macromolecules , 2010, 47(2): 141–145
[9] Ehrlich H, Maldonado M, Spindler K D, . First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution , 2007, 308B(4): 347–356
[10] Ehrlich H, Krautter M, Hanke T, . First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution , 2007, 308B(4): 473–483
[11] Brunner E, Ehrlich H, Schupp P, . Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. Journal of Structural Biology , 2009, 168(3): 539–547
[12] Ehrlich H, Simon P, Carrillo-Cabrera W, . Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chemistry of Materials , 2010, 22(4): 1462–1471
[13] Ehrlich H, Janussen D, Simon P, . Nanostructural organization of naturally occurring composites - part II: silica-chitin-based biocomposites. Journal of Nanomaterials , 2008, 54 (8 pages)
[14] Ehrlich H, Kaluzhaya O V, Tsurkan M V, . First report on chitinous holdfast in sponges (Porifera). Proceedings of the Royal Society B , 2013, 280: 1762
[15] Ehrlich H, Deutzmann R, Brunner E, . Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry , 2010, 2(12): 1084–1088
[16] Alonso B, Belamie E. Chitin-silica nanocomposites by self-assembly. Angewandte Chemie International Edition , 2010, 49(44): 8201–8204
[17] Belamie E, Boltoeva M Y, Yang K, . Tunable hierarchical porosity from self-assembled chitin-silica nano-composites. Journal of Materials Chemistry , 2011, 21(42): 16997–17006
[18] Copello G J, Mebert A M, Raineri M, . Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. Journal of Hazardous Materials , 2011, 186(1): 932–939
[19] Wan K, Peng X H, Du P J. Chitin/TiO2 composite for photocatalytic degradation of phenol. Advanced Materials Research , 2010, 132: 105–110
[20] Jayakumar R, Ramachandran R, Divyarani V V, . Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules , 2011, 48(2): 336–344
[21] Jayakumar R, Ramachandran R, Sudheesh Kumar P T, . Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules , 2011, 49(3): 274–280
[22] Di Giuseppe A, Crusianelli M, Passacantado M, . Chitin- and chitosan-anchored methyltrioxorhenium: An innovative approach for selective heterogenous catalytic epoxidations of olefins. Journal of Catalysis , 2010, 276(2): 412–422
[23] Madhumathi K, Sudheesh Kumar P T, Kavya K C, . Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules , 2009, 45(3): 289–292
[24] Kumar P T, Lakshmanan V K, Biswas R, . Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. Journal of Biomedical Nanotechnology , 2012, 8(6): 891–900
[25] Kumar P T, Srinivasan S, Lakshmanan V K, . Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. International Journal of Biological Macromolecules , 2011, 49(1): 20–31
[26] Ogasawara W, Shenton W, Davis S A, . Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials , 2000, 12(10): 2835–2837
[27] Spinde K, Kammer M, Freyer K, . Biomimetic silicification of fibrous chitin from diatoms. Chemistry of Materials , 2011, 23(11): 2973–2978
[28] Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology - A Technology for Crystal Growth and Materials Processing . New York, USA: William Andrew Publishing LLC, 2001
[29] Byrappa K, Adschiri T. Hydrothermal Technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials , 2007, 53(2): 117–166
[30] Yoshimura M, Byrappa K. Hydrothermal processing of materials: past, present and future. Journal of Materials Science , 2008, 43(7): 2085–2103
[31] Riman R E, Suchanek W L, Lencka M M. Hydrothermal crystallization of ceramics. Annales de Chimie Science des Materiaux , 2002, 27(6): 15–36
[32] Suchanek W L, Riman R E. Hydrothermal synthesis of advanced ceramic powders. Advances in Science and Technology , 2006, 45: 184–193
[33] Djurisi? A B, Xi Y Y, Hsu Y F, . Hydrothermal synthesis of nanostructures. Recent Patents on Nanotechnology , 2007, 1(2): 121–128
[34] Mao Y, Park T-J, Zhang F, . Environmentally friendly methodologies of nanostructure synthesis. Small , 2007, 3(7): 1122–1139
[35] Stawski D, Rabiej S, Herczynska L, . Thermo-gravimetric analysis of chitins of different origin. Journal of Thermal Analysis and Calorimetry , 2008, 93(2): 489–494
[36] Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation & Stability , 2005, 87(3): 389–394
[37] Arora S, Lal S, Kumar S, . Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Archives of Applied Science Research , 2001, 3: 188–201
[38] Paulino T A, Simionato J I, Garcia J C, . Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers , 2006, 64(1): 98–103
[39] Kolen’ko Y V, Maximov V D, Burukhin A A, . Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering C , 2003, 23(6-8): 1033–1038
[40] Di Girolamo G, Marra F, Blasi C, . Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings. Ceramics International , 2011, 37(7): 2711–2717
[41] Sumana G, Das M, Srivastava S, . A novel urea biosensor based on zirconia. Thin Solid Films , 2010, 519(3): 1187–1191
[42] Zuo S-H, Zhang L-F, Yuan H-H, . Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode. Bioelectrochemistry , 2009, 74(2): 223–226
[43] Yang J, Wang X, Shi H. An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sensors and Actuators B: Chemical , 2012, 162(1): 178–183
[44] Liu B, Hu J, Foord J S. Electrochemical detection of DNA hybridization by zirconia modified diamond electrode. Electrochemistry Communications , 2012, 19: 46–49
[45] Zhang C, Li C, Yang J, . Tunable luminescence in monodisperse zirconia spheres. Langmuir , 2009, 25(12): 7078–7083
[46] Lavall R L, Assis O B G, Campana-Filho S P. β-chitin from the pens of Loligo sp.: extraction and characterization. Bioresource Technology , 2007, 98(13): 2465–2472
[47] Schleuter D, Günther A, Paasch S, . Chitin-based renewable materials from marine sponges for uranium adsorption. Carbohydrate Polymers , 2013, 92(1): 712–718
[48] Cárdenas G, Cabrera G, Taboada E, . Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science , 2004, 93(4): 1876–1885
[49] Florek M, Fornal E, Gómez-Romero P, . Complementary microstructural and chemical analyses of Sepiaofficinalis endoskeleton. Materials Science and Engineering C , 2009, 29(4): 1220–1226
[50] del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society , 2000, 83(3): 628–634
[51] Monrós G, Marti M C, Carda J, . Effect of hydrolysis time and type of catalyst on the stability of tetragonal zirconia-silica composites synthesized from alkoxides. Journal of Materials Science , 1993, 28(21): 5852–5862
[52] Nouri E, Shahmiri M, Rezaie H R, . The effect of alumina content on the structural properties of ZrO2-Al2O3 unstabilized composite nanopowders. International Journal of Industrial Chemistry , 2012, 3: 17 (8 pages)
[53] Song D, Breedveld V, Deng Y. Rheological study, of self-crosslinking and co-crosslinking of ammonium zirconium carbonate and starch in aqueous solutions. Journal of Applied Polymer Science , 2011, 122(2): 1019–1029
[54] Song D, Zhao Y, Dong C, . Surface modification of cellulose fibers by starch grafting with crosslinkers. Journal of Applied Polymer Science , 2009, 113(5): 3019–3026
[55] Rubio E, Rodriguez-Lugo V, Rodriguez R, . Nanozirconia and sulfated zirconia from ammonia zirconium carbonate. Reviews on Advanced Materials Science , 2009, 22: 67–73
[56] Mikkonen K S, Schmidt J, Vesterinen A H, . Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. Journal of Materials Science , 2013, 48(12): 4205–4213
[57] Kourieh R, Retailleau L, Bennici S, . Influence of the acidic properties of ZrO2 based mixed oxides catalysts in the selective reduction of NOx with n-decane. Catalysis Letters , 2013, 143(1): 74–83
[58] Chen A-J, Wong S-T, Hwang C-C, . Highly efficient and regioselective halogenation over well dispersed rhenium-promoted mesoporous zirconia. ACS Catalysis , 2011, 1(7): 786–793
[59] Sarkar D, Swain S K, Adhikari S, . Synthesis, mechanical properties and bioactivity of nanostructured zirconia. Materials Science and Engineering C , 2013, 33(6): 3413–3417
AI Summary AI Mindmap
PDF(1174 KB)

Accesses

Citations

Detail

Sections
Recommended

/