[1] George A, Ravindran S. Protein templates in hard tissue engineering.
Nano Today , 2010, 5(4): 254–266
[2] Niinomi M, Nakai M, Hieda J.Development of new metallic alloys for biomedical applications.
Acta Biomaterialia , 2012, 8(11): 3888 -3903
[3] Witte F, Hort N, Vogt C,
. Degradable biomaterials based on magnesium corrosion.
Current Opinion in Solid State and Materials Science , 2008, 12(5-6): 63–72
[4] Nellesen J, Fischer J, Beckmann F,
. Microtomography of magnesium implants in bone and their degradation. In: Bonse U, ed.
Proceedings SPIE 6318, Developments in X-Ray Tomography V , 2006, 631806,
10.1117/12.679844[5] Sankaranarayanan S, Jayalakshmi S, Gupta M. Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure Mg.
Materials & Design , 2012, 37: 274–284
[6] Staiger M P, Pietak A M, Huadmai J,
. Magnesium and its alloys as orthopedic biomaterials: a review.
Biomaterials , 2006, 27(9): 1728–1734
[7] Kurosu S, Matsumoto H, Chiba A. Grain refinement of biomedical Co–27Cr–5Mo–0.16N alloy by reverse transformation.
Materials Letters , 2010, 64(1): 49–52
[8] Cifuentes S C, Frutos E, González-Carrasco J L,
. Novel PLLA/magnesium composite for orthopedic applications: A proof of concept.
Materials Letters , 2012, 74: 239–242
[9] Kainer K U, Bala Srinivasan P, Blawert C,
. Corrosion of magnesium and its alloys. In: Tony J A R, ed.
Shreir’s Corrosion .
Oxford:
Elsevier, 2010, 3: 2011–2041
[10] Aghion E, Levy G. The effect of Ca on the
in vitro corrosion performance of biodegradable Mg–Nd–Y–Zr alloy.
Journal of Materials Science , 2010, 45(11): 3096–3101
[11] Zhang S, Zhang X, Zhao C,
. Research on an Mg–Zn alloy as a degradable biomaterial.
Acta Biomaterialia , 2010, 6(2): 626–640
[12] Gu X N, Xie X H, Li N,
. In vitro and
in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal.
Acta Biomaterialia , 2012, 8(6): 2360–2374
[13] Peng Q, Huang Y, Zhou L,
. Preparation and properties of high purity Mg–Y biomaterials.
Biomaterials , 2010, 31(3): 398–403
[14] Kraus T, Fischerauer S F, H?nzi A C,
. Magnesium alloys for temporary implants in osteosynthesis:
in vivo studies of their degradation and interaction with bone.
Acta Biomaterialia , 2012, 8(3): 1230–1238
[15] Sun Y, Zhang B, Wang Y,
. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy.
Materials & Design , 2012, 34: 58–64
[16] Remennik S, Bartsch I, Willbold E,
. New, fast corroding high ductility Mg–Bi–Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants.
Materials Science and Engineering B , 2011, 176(20): 1653–1659
[17] Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review.
Acta Biomaterialia , 2011, 7(4): 1452–1459
[18] Song G, Atrens A. Understanding magnesium corrosion — a framework for improved alloy performance.
Advanced Engineering Materials , 2003, 5(12): 837–858
[19] Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy.
Materials & Design , 2004, 25(7): 637–643
[20] Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H,
. Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–
xZn alloys.
Corrosion Science , 2012, 64: 184-197
[21] Hartwig A.Role of magnesium in genomic stability.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis , 2001, 475(1-2): 113-121
[22] Witte F, Kaese V, Haferkamp H,
. In vivo corrosion of four magnesium alloys and the associated bone response.
Biomaterials , 2005, 26(17): 3557–3563
[23] Wu G, Fan Y, Gao H,
. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D.
Materials Science and Engineering A , 2005, 408(1-2): 255–263
[24] Brar H S, Wong J, Manuel M V. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials.
Journal of the Mechanical Behavior of Biomedical Materials , 2012, 7: 87–95
[25] Li Y, Wen C, Mushahary D,
. Mg–Zr–Sr alloys as biodegradable implant materials.
Acta Biomaterialia , 2012, 8(8): 3177–3188
[26] Zhang E, Yin D, Xu L,
. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application.
Materials Science and Engineering C , 2009, 29(3): 987–993
[27] Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application.
Materials Science and Engineering A , 2008, 497(1-2): 111–118
[28] Du H, Wei Z, Liu X,
. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application.
Materials Chemistry and Physics , 2011, 125(3): 568–575
[29] Salahshoor M, Guo Y B. Biodegradable orthopedic magnesium–calcium (MgCa) alloys, processing, and corrosion performance.
Materials , 2012, 5(1): 135–155
[30] Zhou P, Gong H R. Phase stability, mechanical property, and electronic structure of an Mg–Ca system.
Journal of the Mechanical Behavior of Biomedical Materials , 2012, 8: 154–164
[31] Li Z, Gu X, Lou S,
. The development of binary Mg–Ca alloys for use as biodegradable materials within bone.
Biomaterials , 2008, 29(10): 1329–1344
[32] Wan Y, Xiong G, Luo H,
. Preparation and characterization of a new biomedical magnesium–calcium alloy.
Materials & Design , 2008, 29(10): 2034–2037
[33] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R,
. Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys.
Materials & Design , 2012, 33: 88–97
[34] Xu S W, Kamado S, Honma T. Recrystallization mechanism and the relationship between grain size and Zener–Hollomon parameter of Mg–Al–Zn–Ca alloys during hot compression.
Scripta Materialia , 2010, 63(3): 293–296
[35] StJohn D H, Qian M, Easton M A,
. Grain refinement of magnesium alloys.
Metallurgical and Materials Transactions A , 2005, 36(7): 1669-1679
[36] Berglund I S, Brar H S, Dolgova N,
. Synthesis and characterization of Mg–Ca–Sr alloys for biodegradable orthopedic implant applications.
Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(6): 1524–1534
[37] Gu X, Zheng Y, Cheng Y,
. In vitro corrosion and biocompatibility of binary magnesium alloys.
Biomaterials , 2009, 30(4): 484–498
[38] Khan S A, Miyashita Y, Mutoh Y,
. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys.
Materials Science and Engineering A , 2006, 420(1-2): 315–321
[39] Zainal Abidin N I, Atrens A D, Martin D,
. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C.
Corrosion Science , 2011, 53(11): 3542–3556
[40] Xiao W, Jia S, Wang L,
. The microstructures and mechanical properties of cast Mg–Zn–Al–RE alloys.
Journal of Alloys and Compounds , 2009, 480(2): L33–L36
[41] Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation.
Materials Science and Engineering A , 2004, 385(1-2): 300–308
[42] Li Y C, Wong C S, Wen C,
. Biodegradable Mg–Zr–Ca alloys for bone implant materials.
Materials Technology: Advanced Performance Materials , 2012, 27(1): 49–51
[43] Witte F, Fischer J, Nellesen J,
. In vitro and
in vivo corrosion measurements of magnesium alloys.
Biomaterials , 2006, 27(7): 1013–1018
[44] Gu X N, Zhou W R, Zheng Y F,
. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - in simulated body fluid.
Acta Biomaterialia , 2010, 6(12): 4605–4613
[45] Yang L, Huang Y D, Feyerabend F,
. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys.
Journal of the Mechanical Behavior of Biomedical Materials , 2012, 13: 36–44
[46] Chang J-W, Guo X-W, Fu P-H,
. Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy.
Electrochimica Acta , 2007, 52(9): 3160–3167
[47] Liang S, Guan D, Tan X. The relation between heat treatment and corrosion behavior of Mg–Gd–Y–Zr alloy.
Materials & Design , 2011, 32(3): 1194–1199
[48] Peng L M, Chang J W, Guo X W,
. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg–10Gd–3Y–0.4Zr.
Journal of Applied Electrochemistry , 2009, 39(6): 913–920
[49] Xu L P, Yu G N, Zhang E,
. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application.
Journal of Biomedical Materials Research Part A , 2007, 83A(3): 703–711
[50] Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy.
Journal of Materials Science: Materials in Medicine , 2012, 23(3): 805–812
[51] Erdmann N, Angrisani N, Reifenrath J,
. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative
in vivo study in rabbits.
Acta Biomaterialia , 2011, 7(3): 1421–1428