Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties

Zhi-Wen CHEN1,2(), Chan-Hung SHEK2, C. M. Lawrence WU2(), Joseph K. L. LAI2

PDF(1540 KB)
PDF(1540 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (3) : 203-226. DOI: 10.1007/s11706-013-0209-5
REVIEW ARTICLE
REVIEW ARTICLE

Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties

  • Zhi-Wen CHEN1,2(), Chan-Hung SHEK2, C. M. Lawrence WU2(), Joseph K. L. LAI2
Author information +
History +

Abstract

This review article summarizes the new research in solid-state physical chemistry understanding of the microstructure characteristics of semiconductor tin oxide thin films made in the last years in our group. The work mainly focuses on the fabrication technology of semiconductor tin oxides thin films by using pulsed laser deposition (PLD) as well as the application of this technology on new micro- and nanostructured materials. It is an interdisciplinary work that integrates the areas of physics, chemistry and materials science.

Keywords

tin dioxide / thin film / synthesis / microstructure / nanostructure / property

Cite this article

Download citation ▾
Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties. Front Mater Sci, 2013, 7(3): 203‒226 https://doi.org/10.1007/s11706-013-0209-5

References

[1] Chopra K L, Major S, Pandya D K. Transparent conductors-A status review. Thin Solid Films , 1983, 102(1): 1–46
[2] Kohl D.The role of noble metals in the chemistry of solid-state gas sensors. Sensors and Actuators B: Chemical , 1990, 1(1–6): 158 –165
[3] Abello L, Bochu B, Gaskov A, . Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. Journal of Solid State Chemistry , 1998, 135(1): 78–85
[4] Ansari S G, Boroojerdian P, Sainkar S R, . Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films , 1997, 295(1–2): 271–276
[5] Ferrere S, Zaban A, Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B , 1997, 101(23): 4490–4493
[6] Varghese O K, Malhotra L K. Electrode-sample capacitance effect on ethanol sensitivity of nano-grained SnO2 thin films. Sensors and Actuators B: Chemical , 1998, 53(1–2): 19–23
[7] He Y S, Campbell J C, Murphy R C, . Electrical and optical characterization of Sb:SnO2. Journal of Materials Research , 1993, 8(12): 3131–3134
[8] Wang D, Wen S, Chen J, . Microstructure of SnO2. Physical Review B , 1994, 49(20): 14282–14285
[9] Cirera A, Vilà A, Diéguez A, . Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders. Sensors and Actuators B: Chemical , 2000, 64(1–3): 65–69
[10] Sekizawa K, Widjaja H, Maeda S, . Low temperature oxidation of methane over Pd catalyst supported on metal oxides. Catalysis Today , 2000, 59(1–2): 69–74
[11] Dai Z R, Gole J L, Stout J D, . Tin oxide nanowires, nanoribbons, and nanotubes. The Journal of Physical Chemistry B , 2002, 106(6): 1274–1279
[12] Liu Y, Zheng C, Wang W, . Synthesis and characterization of rutile SnO2 nanorods. Advanced Materials , 2001, 13(24): 1883–1887
[13] Xu C K, Xu G D, Liu Y K, . Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scripta Materialia , 2002, 46(11): 789–794
[14] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947–1949
[15] Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications , 2001, 118(7): 351–354
[16] Hu J Q, Ma X L, Shang N G, . Large-scale rapid oxidation synthesis of SnO2 nanoribbons. The Journal of Physical Chemistry B , 2002, 106(15): 3823–3826
[17] Maddalena A, Maschio R D, Dire S, . Electrical conductivity of tin oxide films prepared by the sol-gel method. Journal of Non-Crystalline Solids , 1990, 121(1–3): 365–369
[18] Shek C H, Lai J K L, Lin G M. Grain growth in nanocrystalline SnO2 prepared by sol-gel route. Nanostructured Materials , 1999, 11(7): 887–893
[19] Ghoshtagore R N. Mechanism of CVD thin film SnO2 formation. Journal of the Electrochemical Society , 1978, 125(1): 110–117
[20] Tarey R D, Raju T A. A method for the deposition of transparent conducting thin films of tin oxide. Thin Solid Films , 1985, 128(3–4): 181–189
[21] Minami T, Nanto H, Takata S. Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates. Japanese Journal of Applied Physics , 1988, 27(1): L287–L289
[22] Zhu J J, Lu Z H, Aruna S T, . Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chemistry of Materials , 2000, 12(9): 2557–2566
[23] Schlosser V, Wind G. Electrical and optical properties of tin oxide layers prepared by physical vapor deposition. In: Solomon I, Equer B, Helm P, eds. Eighth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Held at Florence, Italy, May 9–13, 1988 . Dordrecht, the Netherlands: Kluwer Academic Publishers, 1988, 998
[24] Zhu X, Birringer R, Herr U, . X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Physical Review B , 1987, 35(17): 9085–9090
[25] Schaefer H E, Würschum R, Birringer R, . Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy. Physical Review B , 1988, 38(14): 9545–9554
[26] Chrisey D B, Hubler G K. Pulsed Laser Deposition of Thin Films . New York: Wiley, 1994, 327
[27] Willmott P R, Huber J R. Pulsed laser vaporization and deposition. Reviews of Modern Physics , 2000, 72(1): 315–328
[28] Auciello O, Engemann J, eds. Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals, and Devices . The Netherlands: Kluwer Academic Publishers, 1993
[29] B?uerle D. Laser Processing and Chemistry . New York: Springer, 1996
[30] Chen Z W, Lai J K L, Shek C H, . Nucleation and growth of SnO2 nanocrystallites prepared by pulsed laser deposition. Applied Physics A: Materials Science & Processing , 2005, 81(5): 959–962
[31] von Allmen M, Blatter A. Laser-Beam Interactions with Materials . New York: Springer, 1995
[32] Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science , 2002, 298(5594): 811–814
[33] Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration. Physical Review Letters , 2002, 88(22): 225501 (4 pages)
[34] Moldovan D, Yamakov V, Wolf D, . Scaling behavior of grain-rotation-induced grain growth. Physical Review Letters , 2002, 89(20): 206101 (4 pages)
[35] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science , 1998, 281(5379): 969–971
[36] Leite E R, Giraldi T R, Pontes F M, . Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Applied Physics Letters , 2003, 83(8): 1566–1568
[37] Leite E R, Weber I T, Longo E, . A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Advanced Materials , 2000, 12(13): 965–968
[38] Leite E R, Maciel A P, Weber I T, . Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Advanced Materials , 2002, 14(12): 905–908
[39] Musolino V, Dal Corso A, Selloni A. Initial stages of growth of copper on MgO(100): A first principles study. Physical Review Letters , 1999, 83(14): 2761–2764
[40] Hu M, Noda S, Komiyama H. A new insight into the growth mode of metals on TiO2(110). Surface Science , 2002, 513(3): 530–538
[41] Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. Journal of Applied Physics , 2001, 90(2): 1017–1025
[42] Soler J M, Beltran M R, Michaelian K, . Metallic bonding and cluster structure. Physical Review B , 2000, 61(8): 5771–5780
[43] Hu M, Noda S, Tsuji Y, . Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 2002, 20(3): 589–596
[44] Zuo J M, Li B Q. Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces. Physical Review Letters , 2002, 88(25): 255502 (4 pages)
[45] Williams G, Coles G S V. Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique. Journal of Materials Chemistry , 1998, 8(7): 1657–1664
[46] Bruno L, Pijolat C, Lalauze R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties. Sensors and Actuators B: Chemical , 1994, 18(1–3): 195–199
[47] Serventi A M, Dolbec R, El Khakani M A, . High-resolution transmission electron microscopy investigation of the nanostructure of undoped and Pt-doped nanocrystalline pulsed laser deposited SnO2 thin films. Journal of Physics and Chemistry of Solids , 2003, 64(11): 2097–2103
[48] Chen Z W, Lai J K L, Shek C H, . Synthesis and structural characterization of rutile SnO2 nanocrystals. Journal of Materials Research , 2003, 18(6): 1289–1292
[49] Chen Z W, Lai J K L, Shek C H, . Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition. Physics Letters A , 2005, 345(1–3): 218–223
[50] Chen Z W, Lai J K L, Shek C H. Insights into microstructural evolution from nanocrystalline SnO2 thin films prepared by pulsed laser deposition. Physical Review B , 2004, 70(16): 165314 (7 pages)
[51] Chen Z W, Lai J K L, Shek C H. High-resolution transmission electron microscopy investigation of nanostructures in SnO2 thin films prepared by pulsed laser deposition. Journal of Solid State Chemistry , 2005, 178(3): 892–896
[52] Chen Z W, Lai J K L, Shek C H. Mystery of porous SnO2 thin film formation by pulsed delivery. Chemical Physics Letters , 2006, 422(1–3): 1–5
[53] Serventi A M, El Khakani M A, Saint-Jacques R G, . Highly textured nanostructure of pulsed laser deposited IrO2 thin films as investigated by transmission electron microscopy. Journal of Materials Research , 2001, 16(08): 2336–2342
[54] Butty J, Peyghambarian N, Kao Y H, . Room temperature optical gain in sol-gel derived CdS quantum dots. Applied Physics Letters , 1996, 69(21): 3224–3226
[55] Chen Z W, Wang X P, Tan S, . Multifractal behavior of crystallization on Au/Ge bilayer films. Physical Review B , 2001, 63(16): 165413 (5 pages)
[56] Huang L J, Liu B X, Ding J R, . Multifractal characteristics of magnetic-microsphere aggregates in thin films. Physical Review B , 1989, 40(1): 858–861
[57] Li H, Ding Z, Wu Z. Multifractal behavior of the distribution of secondary-electron-emission sites on solid surfaces. Physical Review B , 1995, 51(19): 13554–13559
[58] Li H, Ding Z-J, Wu Z. Multifractal analysis of the spatial distribution of secondary-electron emission sites. Physical Review B , 1996, 53(24): 16631–16636
[59] Wang B, Wang Y, Wu Z. Multifractal behavior of solid-on-solid growth. Solid State Communications , 1995, 96(2): 69–72
[60] Ohta S, Honjo H. Growth probability distribution in irregular fractal-like crystal growth of ammonium chloride. Physical Review Letters , 1988, 60(7): 611–614
[61] Xu C, Tamaki J, Miura N, . Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B: Chemical , 1991, 3(2): 147–155
[62] Baumann T F, Kucheyev S O, Gash A E, . Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Advanced Materials , 2005, 17(12): 1546–1548
[63] Cheng B, Russell J M, Shi W S, . Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods. Journal of the American Chemical Society , 2004, 126(19): 5972–5973
[64] Hu J Q, Bando Y, Liu Q L, . Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Advanced Functional Materials , 2003, 13(6): 493–496
[65] McCarthy G, Welton J. X-ray diffraction data for SnO2. An illustration of the new powder data evaluation methods. Journal of Materials Characterization , 1989, 4(03): 156–159
[66] Traylor J G, Smith H G, Nicklow R M, . Wilkinson, lattice dynamics of rutile. Physical Review B , 1971, 3(10): 3457–3472
[67] Peercy P S, Morosin B. Pressure and temperature dependences of the Raman-active phonons in SnO2. Physical Review B , 1973, 7(6): 2779–2786
[68] Diéguez A, Romano-Rodríguez A, Vilà A, . The complete Raman spectrum of nanometric SnO2 particles. Journal of Applied Physics , 2001, 90(3): 1550–1557
[69] Wang G H, Han M. Structure and properties of nanocrystalline materials. Progress in Physics , 1990, 10(3): 248–289
[70] Romanowski W. Equilibrium forms of very small metallic crystals. Surface Science , 1969, 18(2): 373–388
[71] Jones F H, Dixon R, Foord J S, . The surface structure of SnO2(110)(4×1) revealed by scanning tunneling microscopy. Surface Science , 1997, 376(1–3): 367–373
[72] Pagnier T, Boulova M, Galerie A, . In situ coupled Raman and impedance measurements of the reactivity of nanocrystalline SnO2 versus H2S. Journal of Solid State Chemistry , 1999, 143(1): 86–94
[73] Hama T, Matsubara T. Self-consistent Einstein model and theory of anharmonic surface vibration. II Face-centered cubic lattice. Progress of Theoretical Physics , 1978, 59(5): 1407–1417
[74] Hayashi S, Yamamoto K. Amorphous-like Raman spectra of semiconductor microcrystals. Superlattices and Microstructures , 1986, 2(6): 581–585
[75] Dolbec R, El Khakani M A, Serventi A M, . Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films , 2002, 419(1–2): 230–236
[76] Greskovich C, Lay K W. Grain growth in very porous Al2O3 compacts. Journal of the American Ceramic Society , 1972, 55(3): 142–146
[77] Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica et Cosmochimica Acta , 1999, 63(10): 1549–1557
[78] Oviedo J, Gillan M J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surface Science , 2000, 463(2): 93–101
[79] Slater B, Catlow C R A, Gay D H, . Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. The Journal of Physical Chemistry B , 1999, 103(48): 10644–10650
AI Summary AI Mindmap
PDF(1540 KB)

Accesses

Citations

Detail

Sections
Recommended

/