[1] Chopra K L, Major S, Pandya D K. Transparent conductors-A status review.
Thin Solid Films , 1983, 102(1): 1–46
[2] Kohl D.The role of noble metals in the chemistry of solid-state gas sensors.
Sensors and Actuators B: Chemical , 1990, 1(1–6): 158 –165
[3] Abello L, Bochu B, Gaskov A,
. Structural characterization of nanocrystalline SnO
2 by X-ray and Raman spectroscopy.
Journal of Solid State Chemistry , 1998, 135(1): 78–85
[4] Ansari S G, Boroojerdian P, Sainkar S R,
. Grain size effects on H
2 gas sensitivity of thick film resistor using SnO
2 nanoparticles.
Thin Solid Films , 1997, 295(1–2): 271–276
[5] Ferrere S, Zaban A, Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives.
The Journal of Physical Chemistry B , 1997, 101(23): 4490–4493
[6] Varghese O K, Malhotra L K. Electrode-sample capacitance effect on ethanol sensitivity of nano-grained SnO
2 thin films.
Sensors and Actuators B: Chemical , 1998, 53(1–2): 19–23
[7] He Y S, Campbell J C, Murphy R C,
. Electrical and optical characterization of Sb:SnO
2.
Journal of Materials Research , 1993, 8(12): 3131–3134
[8] Wang D, Wen S, Chen J,
. Microstructure of SnO
2.
Physical Review B , 1994, 49(20): 14282–14285
[9] Cirera A, Vilà A, Diéguez A,
. Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO
2 gas sensor powders.
Sensors and Actuators B: Chemical , 2000, 64(1–3): 65–69
[10] Sekizawa K, Widjaja H, Maeda S,
. Low temperature oxidation of methane over Pd catalyst supported on metal oxides.
Catalysis Today , 2000, 59(1–2): 69–74
[11] Dai Z R, Gole J L, Stout J D,
. Tin oxide nanowires, nanoribbons, and nanotubes.
The Journal of Physical Chemistry B , 2002, 106(6): 1274–1279
[12] Liu Y, Zheng C, Wang W,
. Synthesis and characterization of rutile SnO
2 nanorods.
Advanced Materials , 2001, 13(24): 1883–1887
[13] Xu C K, Xu G D, Liu Y K,
. Preparation and characterization of SnO
2 nanorods by thermal decomposition of SnC
2O
4 precursor.
Scripta Materialia , 2002, 46(11): 789–794
[14] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides.
Science , 2001, 291(5510): 1947–1949
[15] Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbons of tin oxide.
Solid State Communications , 2001, 118(7): 351–354
[16] Hu J Q, Ma X L, Shang N G,
. Large-scale rapid oxidation synthesis of SnO
2 nanoribbons.
The Journal of Physical Chemistry B , 2002, 106(15): 3823–3826
[17] Maddalena A, Maschio R D, Dire S,
. Electrical conductivity of tin oxide films prepared by the sol-gel method.
Journal of Non-Crystalline Solids , 1990, 121(1–3): 365–369
[18] Shek C H, Lai J K L, Lin G M. Grain growth in nanocrystalline SnO
2 prepared by sol-gel route.
Nanostructured Materials , 1999, 11(7): 887–893
[19] Ghoshtagore R N. Mechanism of CVD thin film SnO
2 formation.
Journal of the Electrochemical Society , 1978, 125(1): 110–117
[20] Tarey R D, Raju T A. A method for the deposition of transparent conducting thin films of tin oxide.
Thin Solid Films , 1985, 128(3–4): 181–189
[21] Minami T, Nanto H, Takata S. Highly conducting and transparent SnO
2 thin films prepared by RF magnetron sputtering on low-temperature substrates.
Japanese Journal of Applied Physics , 1988, 27(1): L287–L289
[22] Zhu J J, Lu Z H, Aruna S T,
. Sonochemical synthesis of SnO
2 nanoparticles and their preliminary study as Li insertion electrodes.
Chemistry of Materials , 2000, 12(9): 2557–2566
[23] Schlosser V, Wind G. Electrical and optical properties of tin oxide layers prepared by physical vapor deposition. In: Solomon I, Equer B, Helm P, eds.
Eighth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Held at Florence, Italy, May 9–13, 1988 .
Dordrecht, the Netherlands:
Kluwer Academic Publishers, 1988, 998
[24] Zhu X, Birringer R, Herr U,
. X-ray diffraction studies of the structure of nanometer-sized crystalline materials.
Physical Review B , 1987, 35(17): 9085–9090
[25] Schaefer H E, Würschum R, Birringer R,
. Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy.
Physical Review B , 1988, 38(14): 9545–9554
[26] Chrisey D B, Hubler G K.
Pulsed Laser Deposition of Thin Films . New York: Wiley, 1994, 327
[27] Willmott P R, Huber J R. Pulsed laser vaporization and deposition.
Reviews of Modern Physics , 2000, 72(1): 315–328
[28] Auciello O, Engemann J, eds.
Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals, and Devices .
The Netherlands:
Kluwer Academic Publishers, 1993
[29] B?uerle D.
Laser Processing and Chemistry . New York: Springer, 1996
[30] Chen Z W, Lai J K L, Shek C H,
. Nucleation and growth of SnO
2 nanocrystallites prepared by pulsed laser deposition.
Applied Physics A: Materials Science & Processing , 2005, 81(5): 959–962
[31] von Allmen M, Blatter A.
Laser-Beam Interactions with Materials . New York: Springer, 1995
[32] Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering.
Science , 2002, 298(5594): 811–814
[33] Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration.
Physical Review Letters , 2002, 88(22): 225501 (4 pages)
[34] Moldovan D, Yamakov V, Wolf D,
. Scaling behavior of grain-rotation-induced grain growth.
Physical Review Letters , 2002, 89(20): 206101 (4 pages)
[35] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals.
Science , 1998, 281(5379): 969–971
[36] Leite E R, Giraldi T R, Pontes F M,
. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature.
Applied Physics Letters , 2003, 83(8): 1566–1568
[37] Leite E R, Weber I T, Longo E,
. A new method to control particle size and particle size distribution of SnO
2 nanoparticles for gas sensor applications.
Advanced Materials , 2000, 12(13): 965–968
[38] Leite E R, Maciel A P, Weber I T,
. Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution.
Advanced Materials , 2002, 14(12): 905–908
[39] Musolino V, Dal Corso A, Selloni A. Initial stages of growth of copper on MgO(100): A first principles study.
Physical Review Letters , 1999, 83(14): 2761–2764
[40] Hu M, Noda S, Komiyama H. A new insight into the growth mode of metals on TiO
2(110).
Surface Science , 2002, 513(3): 530–538
[41] Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers.
Journal of Applied Physics , 2001, 90(2): 1017–1025
[42] Soler J M, Beltran M R, Michaelian K,
. Metallic bonding and cluster structure.
Physical Review B , 2000, 61(8): 5771–5780
[43] Hu M, Noda S, Tsuji Y,
. Effect of interfacial interactions on the initial growth of Cu on clean SiO
2 and 3-mercaptopropyltrimethoxysilane-modified SiO
2 substrates.
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 2002, 20(3): 589–596
[44] Zuo J M, Li B Q. Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces.
Physical Review Letters , 2002, 88(25): 255502 (4 pages)
[45] Williams G, Coles G S V. Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique.
Journal of Materials Chemistry , 1998, 8(7): 1657–1664
[46] Bruno L, Pijolat C, Lalauze R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties.
Sensors and Actuators B: Chemical , 1994, 18(1–3): 195–199
[47] Serventi A M, Dolbec R, El Khakani M A,
. High-resolution transmission electron microscopy investigation of the nanostructure of undoped and Pt-doped nanocrystalline pulsed laser deposited SnO
2 thin films.
Journal of Physics and Chemistry of Solids , 2003, 64(11): 2097–2103
[48] Chen Z W, Lai J K L, Shek C H,
. Synthesis and structural characterization of rutile SnO
2 nanocrystals.
Journal of Materials Research , 2003, 18(6): 1289–1292
[49] Chen Z W, Lai J K L, Shek C H,
. Multifractal spectra of scanning electron microscope images of SnO
2 thin films prepared by pulsed laser deposition.
Physics Letters A , 2005, 345(1–3): 218–223
[50] Chen Z W, Lai J K L, Shek C H. Insights into microstructural evolution from nanocrystalline SnO
2 thin films prepared by pulsed laser deposition.
Physical Review B , 2004, 70(16): 165314 (7 pages)
[51] Chen Z W, Lai J K L, Shek C H. High-resolution transmission electron microscopy investigation of nanostructures in SnO
2 thin films prepared by pulsed laser deposition.
Journal of Solid State Chemistry , 2005, 178(3): 892–896
[52] Chen Z W, Lai J K L, Shek C H. Mystery of porous SnO
2 thin film formation by pulsed delivery.
Chemical Physics Letters , 2006, 422(1–3): 1–5
[53] Serventi A M, El Khakani M A, Saint-Jacques R G,
. Highly textured nanostructure of pulsed laser deposited IrO
2 thin films as investigated by transmission electron microscopy.
Journal of Materials Research , 2001, 16(08): 2336–2342
[54] Butty J, Peyghambarian N, Kao Y H,
. Room temperature optical gain in sol-gel derived CdS quantum dots.
Applied Physics Letters , 1996, 69(21): 3224–3226
[55] Chen Z W, Wang X P, Tan S,
. Multifractal behavior of crystallization on Au/Ge bilayer films.
Physical Review B , 2001, 63(16): 165413 (5 pages)
[56] Huang L J, Liu B X, Ding J R,
. Multifractal characteristics of magnetic-microsphere aggregates in thin films.
Physical Review B , 1989, 40(1): 858–861
[57] Li H, Ding Z, Wu Z. Multifractal behavior of the distribution of secondary-electron-emission sites on solid surfaces.
Physical Review B , 1995, 51(19): 13554–13559
[58] Li H, Ding Z-J, Wu Z. Multifractal analysis of the spatial distribution of secondary-electron emission sites.
Physical Review B , 1996, 53(24): 16631–16636
[59] Wang B, Wang Y, Wu Z. Multifractal behavior of solid-on-solid growth.
Solid State Communications , 1995, 96(2): 69–72
[60] Ohta S, Honjo H. Growth probability distribution in irregular fractal-like crystal growth of ammonium chloride.
Physical Review Letters , 1988, 60(7): 611–614
[61] Xu C, Tamaki J, Miura N,
. Grain size effects on gas sensitivity of porous SnO
2-based elements.
Sensors and Actuators B: Chemical , 1991, 3(2): 147–155
[62] Baumann T F, Kucheyev S O, Gash A E,
. Facile synthesis of a crystalline, high-surface-area SnO
2 aerogel.
Advanced Materials , 2005, 17(12): 1546–1548
[63] Cheng B, Russell J M, Shi W S,
. Large-Scale, solution-phase growth of single-crystalline SnO
2 nanorods.
Journal of the American Chemical Society , 2004, 126(19): 5972–5973
[64] Hu J Q, Bando Y, Liu Q L,
. Laser-ablation growth and optical properties of wide and long single-crystal SnO
2 ribbons.
Advanced Functional Materials , 2003, 13(6): 493–496
[65] McCarthy G, Welton J. X-ray diffraction data for SnO
2. An illustration of the new powder data evaluation methods.
Journal of Materials Characterization , 1989, 4(03): 156–159
[66] Traylor J G, Smith H G, Nicklow R M,
. Wilkinson, lattice dynamics of rutile.
Physical Review B , 1971, 3(10): 3457–3472
[67] Peercy P S, Morosin B. Pressure and temperature dependences of the Raman-active phonons in SnO
2.
Physical Review B , 1973, 7(6): 2779–2786
[68] Diéguez A, Romano-Rodríguez A, Vilà A,
. The complete Raman spectrum of nanometric SnO
2 particles.
Journal of Applied Physics , 2001, 90(3): 1550–1557
[69] Wang G H, Han M. Structure and properties of nanocrystalline materials.
Progress in Physics , 1990, 10(3): 248–289
[70] Romanowski W. Equilibrium forms of very small metallic crystals.
Surface Science , 1969, 18(2): 373–388
[71] Jones F H, Dixon R, Foord J S,
. The surface structure of SnO
2(110)(4×1) revealed by scanning tunneling microscopy.
Surface Science , 1997, 376(1–3): 367–373
[72] Pagnier T, Boulova M, Galerie A,
. In situ coupled Raman and impedance measurements of the reactivity of nanocrystalline SnO
2 versus H
2S.
Journal of Solid State Chemistry , 1999, 143(1): 86–94
[73] Hama T, Matsubara T. Self-consistent Einstein model and theory of anharmonic surface vibration. II Face-centered cubic lattice.
Progress of Theoretical Physics , 1978, 59(5): 1407–1417
[74] Hayashi S, Yamamoto K. Amorphous-like Raman spectra of semiconductor microcrystals.
Superlattices and Microstructures , 1986, 2(6): 581–585
[75] Dolbec R, El Khakani M A, Serventi A M,
. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition.
Thin Solid Films , 2002, 419(1–2): 230–236
[76] Greskovich C, Lay K W. Grain growth in very porous Al
2O
3 compacts.
Journal of the American Ceramic Society , 1972, 55(3): 142–146
[77] Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania.
Geochimica et Cosmochimica Acta , 1999, 63(10): 1549–1557
[78] Oviedo J, Gillan M J. Energetics and structure of stoichiometric SnO
2 surfaces studied by first-principles calculations.
Surface Science , 2000, 463(2): 93–101
[79] Slater B, Catlow C R A, Gay D H,
. Study of surface segregation of antimony on SnO
2 surfaces by computer simulation techniques.
The Journal of Physical Chemistry B , 1999, 103(48): 10644–10650