[1] Laurencin C T, Attawia M, Borden M D. Advancements in tissue engineered bone substitutes.
Current Opinion in Orthopaedics , 1999, 10(6): 445–451
[2] Enneking W. Transplanting allografts.
Journal of the American College of Surgeons , 2005, 201(1): 5–6
[3] LeGeros R Z. Biodegradation and bioresorption of calcium phosphate ceramics.
Clinical Materials , 1993, 14(1): 65–88
[4] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis.
Biomaterials , 2005, 26(27): 5474–5491
[5] Hing K A. Bioceramic bone graft substitutes: Influence of porosity and chemistry.
International Journal of Applied Ceramic Technology , 2005, 2(3): 184–199
[6] LeGeros R Z. Properties of osteoconductive biomaterials: calcium phosphates.
Clinical Orthopaedics and Related Research , 2002, 395(395): 81–98
[7] Vallet-Regí M, González-Calbet J M. Calcium phosphates as substitution of bone tissues.
Progress in Solid State Chemistry , 2004, 32(1-2): 1–31
[8] Aoki H, Kato K, Ebihara M,
. Studies on the application of apatite to dental materials. (I) Apatite ceramics.
Shika Rikogaku Zasshi , 1976, 17(39): 200–205
[9] Barney V C, Levin M P, Adams D F. Bioceramic implants in surgical periodontal defects. A comparison study.
Journal of Periodontology , 1986, 57(12): 764–770
[10] Cranin A N, Tobin G P, Gelbman J. Applications of hydroxylapatite in oral and maxillofacial surgery. Part II: Ridge augmentation and repair of major oral defects.
Compendium , 1987, 8(5): 334–335 , 337 -338 , 340
[11] Denissen H W, de Groot K. Immediate dental root implants from synthetic dense calcium hydroxylapatite.
The Journal of Prosthetic Dentistry , 1979, 42(5): 551–556
[12] Ellinger R F, Nery E B, Lynch K L. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report.
The International Journal of Periodontics & Restorative Dentistry , 1986, 6(3): 22–33
[13] Albee F H, Morrison H A R O L D F. Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis.
Annals of Surgery , 1920, 71(1): 32–39
[14] Daculsi G, Passuti N, Martin S,
. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study.
Journal of Biomedical Materials Research , 1990, 24(3): 379–396
[15] Sun L, Berndt C C, Gross K A,
. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review.
Journal of Biomedical Materials Research , 2001, 58(5): 570–592
[16] Hing K A, Revell P A, Smith N,
. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds.
Biomaterials , 2006, 27(29): 5014–5026
[17] Kondo N, Ogose A, Tokunaga K,
. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle.
Biomaterials , 2005, 26(28): 5600–5608
[18] Hasegawa S, Ishii S, Tamura J,
. A 5-7 year
in vivo study of high-strength hydroxyapatite/poly(l-lactide) composite rods for the internal fixation of bone fractures.
Biomaterials , 2006, 27(8): 1327–1332
[19] Ohura K, Bohner M, Hardouin P,
. Resorption of, and bone formation from, new β-tricalcium phosphate-monocalcium phosphate cements: An
in vivo study.
Journal of Biomedical Materials Research , 1996, 30(2): 193–200
[20] Tanaka T, Kumagae Y, Saito M,
. Bone formation and resorption in patients after implantation of β-tricalcium phosphate blocks with 60% and 75% porosity in opening-wedge high tibial osteotomy.
Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2008, 86B(2): 453–459
[21] Okuda T, Ioku K, Yonezawa I,
. The effect of the microstructure of beta-tricalcium phosphate on the metabolism of subsequently formed bone tissue.
Biomaterials , 2007, 28(16): 2612–2621
[22] Yoshikawa H, Tamai N, Murase T,
. Interconnected porous hydroxyapatite ceramics for bone tissue engineering.
Journal of the Royal Society Interface , 2009, 6(Suppl 3): S341–S348
[23] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds.
Trends in Biotechnology , 2012, 30(10): 546–554
[24] Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants.
Journal of Materials Research , 1998, 13(01): 94–117
[25] Kaplan D L. Mollusc shell structures: novel design strategies for synthetic materials.
Current Opinion in Solid State and Materials Science , 1998, 3(3): 232–236
[26] Belcher A M, Wu X H, Christensen R J,
. Control of crystal phase switching and orientation by soluble mollusc-shell proteins.
Nature , 1996, 381(6577): 56–58
[27] Sudo S, Fujikawa T, Nagakura T,
. Structures of mollusc shell framework proteins.
Nature , 1997, 387(6633): 563–564
[28] Vecchio K S, Zhang X, Massie J B,
. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants.
Acta Biomaterialia , 2007, 3(6): 910–918
[29] Roy D M, Linnehan S K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange.
Nature , 1974, 247(5438): 220–222
[30] Birchall J D, Thomas N L. On the architecture and function of cuttlefish bone.
Journal of Materials Science , 1983, 18(7): 2081–2086
[31] Kim B-S, Kim J S, Sung H-M,
. Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone.
Journal of Biomedical Materials Research Part A , 2012, 100A(7): 1673–1679
[32] Vecchio K S, Zhang X, Massie J B,
. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants.
Acta Biomaterialia , 2007, 3(5): 785–793
[33] Lin A Y M, Meyers M A, Vecchio K S. Mechanical properties and structure of
Strombus gigas,
Tridacna gigas, and
Haliotis rufescens sea shells: A comparative study.
Materials Science and Engineering C , 2006, 26(8): 1380–1389
[34] Camprasse S, Camprasse G, Pouzol M,
. Artificial dental root made of natural calcium carbonate (bioracine).
Clinical Materials , 1990, 5(2-4): 235–250
[35] Lamghari M, Almeida M J, Berland S,
. Stimulation of bone marrow cells and bone formation by nacre:
in vivo and
in vitro studies.
Bone , 1999, 25(2 Supplement 1): 91S–94S
[36] Lopez E, Vidal B, Berland S,
. Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained
in vitro.
Tissue and Cell , 1992, 24(5): 667–679
[37] Atlan G, Delattre O, Berland S,
. Interface between bone and nacre implants in sheep.
Biomaterials , 1999, 20(11): 1017–1022
[38] Zhang X, Vecchio K S. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells.
Materials Science and Engineering C , 2006, 26(8): 1445–1450
[39] Menig R, Meyers M H, Meyers M A,
. Quasi-static and dynamic mechanical response of
Strombus gigas (conch) shells.
Materials Science and Engineering A , 2001, 297(1-2): 203–211
[40] Hou D F, Zhou G S, Zheng M. Conch shell structure and its effect on mechanical behaviors.
Biomaterials , 2004, 25(4): 751–756
[41] Kamat S, Su X, Ballarini R,
. Structural basis for the fracture toughness of the shell of the conch
Strombus gigas.
Nature , 2000, 405(6790): 1036–1040
[42] Weber J N, White E W, Lebiedzik J. New porous biomaterials by replication of echinoderm skeletal microstructures.
Nature , 1971, 233(5318): 337–339
[43] Rocha J H, Lemos A F, Agathopoulos S,
. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones.
Journal of Biomedical Materials Research Part A , 2006, 77A(1): 160–168
[44] LeGeros R Z, Gatti A M, Kijkowska R,
. Mg-substituted tricalcium phosphates: formation and properties.
Key Engineering Materials , 2004, 254-256: 127–130
[45] Zhang X, Takahashi T, Vecchio K S. Development of bioresorbable Mg-substituted tricalcium phosphate scaffolds for bone tissue engineering.
Materials Science and Engineering C , 2009, 29(6): 2003–2010
[46] Zhang X, Jiang F, Groth T,
. Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution.
Journal of Materials Science: Materials in Medicine , 2008, 19(9): 3063–3070
[47] Rezwan K, Chen Q Z, Blaker J J,
. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
Biomaterials , 2006, 27(18): 3413–3431
[48] Wasielewski R C, Sheridan K C, Lubbers M A. Coralline hydroxyapatite in complex acetabular reconstruction.
Orthopedics , 2008, 31(4): 367
[49] Knackstedt M A, Arns C H, Senden T J,
. Structure and properties of clinical coralline implants measured via 3D imaging and analysis.
Biomaterials , 2006, 27(13): 2776–2786
[50] Hsu C-J, Chou W-Y, Teng H-P,
. Coralline hydroxyapatite and laminectomy-derived bone as adjuvant graft material for lumbar posterolateral fusion.
Journal of Neurosurgery: Spine , 2005, 3(4): 271–275
[51] Ivankovic H, Gallego Ferrer G, Tkalcec E,
. Preparation of highly porous hydroxyapatite ceramics from cuttlefish bone.
Advances in Science and Technology , 2006, 49: 142–147
[52] Zhang X. Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes.
Dissertation for the Doctoral Degree .
San Diego, USA:
University of California, 2007
[53] Klawitter J J, Bagwell J G, Weinstein A M,
. An evaluation of bone growth into porous high density polyethylene.
Journal of Biomedical Materials Research , 1976, 10(2): 311–323
[54] Klawitter J J, Hulbert S F. Application of porous ceramics for the attachment of load bearing internal orthopedic applications.
Journal of Biomedical Materials Research Part A , 1971, 5(6): 161–229
[55] Sherrard K M. Cuttlebone morphology limits habitat depth in eleven species of
Sepia (Cephalopoda: Sepiidae).
The Biological Bulletin , 2000, 198(3): 404–414
[56] Denton E J, Gilpin-Brown J B. The buoyancy of the cuttlefish,
Sepia officinalis (L.).
Journal of the Marine Biological Association of the United Kingdom , 1961, 41(2): 319–342
[57] Walsh P J, Buchanan F J, Dring M,
. Low-pressure synthesis and characterisation of hydroxyapatite derived from mineralise red algae.
Chemical Engineering Journal , 2008, 137(1): 173–179
[58] Felicio-Fernandes G, Laranjeira M C M. Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation.
Quimica Nova , 2000, 23(4): 441–446
[59] dePaula S M, Huila M F, Araki K,
. Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from
Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media.
Micron , 2010, 41(8): 983–989
[60] Cunningham E, Dunne N, Walker G,
. Hydroxyapatite bone substitutes developed via replication of natural marine sponges.
Journal of Materials Science: Materials in Medicine , 2010, 21(8): 2255–2261