PDF(413 KB)
RESEARCH ARTICLE
RESEARCH ARTICLE
Thermal shock behavior of ZrB2--SiC ceramics with different quenching media
- Chang-An WANG1(), Ming-Fu WANG2
Author information
+
1. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Science and Technology on Scramjet Laboratory, Beijing 100074, China
Corresponding author: WANG Chang-An,Email:wangca@mail.tsinghua.edu.cn
Show less
History
+
Received |
Accepted |
Published |
12 Apr 2013 |
04 May 2013 |
05 Jun 2013 |
Issue Date |
|
05 Jun 2013 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] Fahrenholtz W G, Hilmas G E, Talmy I G, . Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society , 2007, 90(5): 1347-1364
[2] Wang H L, Wang C A, Chen D L, . Preparation and characterization of ZrB2-SiC ultra-high temperature ceramics by microwave sintering. Frontiers of Materials Science in China , 2010, 4(3): 276-280
[3] Opeka M M, Talmy I G, Wuchina E J, . Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society , 1999, 19(13-14): 2405-2414
[4] Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000°C+ hypersonic aerosurfaces: theoretical considerations and historical experience. Journal of Materials Science , 2004, 39(19): 5887-5904
[5] Monteverde F, Guicciardi S, Melandri C, . Densification, microstructure evolution and mechanical properties of ultrafine SiC particle-dispersed ZrB2 matrix composites, . In: Orlovskaya N,Lugovy M, eds. NATO Science for Peace and Security Series B: Physics and Biophysics. Boron Rich Solids: Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor . Springer, 2011, 261 -272
[6] Monteverde F. The addition of SiC particles into a MoSi2-doped ZrB2 matrix: Effects on densification, microstructure and thermo-physical properties. Materials Chemistry and Physics , 2009, 113(2-3): 626-633
[7] Zhang Z P, Shao Y F, Song F. Characteristics of crack patterns controlling the retained strength of ceramics after thermal shock. Frontiers of Materials Science in China , 2010, 4(3): 251-254
[8] Zimmermann J W, Hilmas G E, Fahrenholtz W G. Thermal shock resistance of ZrB2 and ZrB2-30% SiC. Materials Chemistry and Physics , 2008, 112(1): 140-145
[9] Meng S H, Liu G Q, Guo Y, . Mechanisms of thermal shock failure for ultra-high temperature ceramic. Materials & Design , 2009, 30(6): 2108-2112
[10] Hugot F, Glandus J C. Thermal shock of alumina by compressed air cooling. Journal of the European Ceramic Society , 2007, 27(4): 1919-1925
[11] Osterstock F, Monot I, Desgardin G, . Influence of grain size on the toughness and thermal shock resistance of polycrystalline YBa2Cu3O7-δ. Journal of the European Ceramic Society , 1996, 16(7): 687-694
[12] Absi J, Glandus J C. Improved method for severe thermal shocks testing of ceramics by water quenching. Journal of the European Ceramic Society , 2004, 24(9): 2835-2838
[13] Tao W S. An Introduction to Heat Transfer. Beijing: Higher Education Press, 2002 (in Chinese)
[14] Monteverde F, Scatteia L. Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application. Journal of the American Ceramic Society , 2007, 90(4): 1130-1138
[15] Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics (2nd edition). New York: John Wiley & Sons Publisher, 1975
[16] Hu P, Wang Z, Sun X. Effect of surface oxidation on thermal shock resistance of ZrB2-SiC-G composite. International Journal of Refractory Metals & Hard Materials , 2010, 28(2): 280-285