Effect of silk sericin on morphology and structure of calcium carbonate crystal

Rui-Bo ZHAO1, Hua-Feng HAN1, Shao DING2, Ze-Hao LI1, Xiang-Dong KONG1,2()

PDF(452 KB)
PDF(452 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (2) : 177-183. DOI: 10.1007/s11706-013-0202-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of silk sericin on morphology and structure of calcium carbonate crystal

  • Rui-Bo ZHAO1, Hua-Feng HAN1, Shao DING2, Ze-Hao LI1, Xiang-Dong KONG1,2()
Author information +
History +

Abstract

In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

Keywords

silk sericin / calcium carbonate (CaCO3) / calcite / vaterite / biomineralization

Cite this article

Download citation ▾
Rui-Bo ZHAO, Hua-Feng HAN, Shao DING, Ze-Hao LI, Xiang-Dong KONG. Effect of silk sericin on morphology and structure of calcium carbonate crystal. Front Mater Sci, 2013, 7(2): 177‒183 https://doi.org/10.1007/s11706-013-0202-z

References

[1] Faatz M, Grohn F, Wegner G, . Mineralization of calcium carbonate by controlled release of carbonate in aqueous solution. Materials Science and Engineering C , 2005, 25(2): 153–159
[2] Heap A D, Dickens G R, Stewart L K, . Holocene storage of siliciclastic sediment around islands on the middle shelf of the Great Barrier Reef Platform, north-east Australia. Sedimentology , 2002, 49(3): 603–621
[3] Yu J, Lei M, Cheng B. Facile preparation of monodispersed calcium carbonate spherical particles via a simple precipitation reaction. Materials Chemistry and Physics , 2004, 88(1): 1–4
[4] Jin Y, Liu W C, Wang J R, . (Protamine/dextran sulfate)6 microcapules templated on biocompatible calcium carbonate microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 342(1-3): 40–45
[5] Li S, Yu L, Geng F, . Facile preparation of diversified patterns of calcium carbonate in the presence of DTAB. Journal of Crystal Growth , 2010, 312(10): 1766–1773
[6] Ukrainczyk M, Kontrec J, Kralj D. Precipitation of different calcite crystal morphologies in the presence of sodium stearate. Journal of Colloid and Interface Science , 2009, 329(1): 89–96
[7] Xie A J, Shen Y H, Zhang C Y, . Crystal growth of calcium carbonate with various morphologies in different amino acid systems. Journal of Crystal Growth , 2005, 285(3): 436–443
[8] Zhang Q, Wang X-H. Biomimetic synthesis of amorphous calcium carbonate in phosphatidylcholine solution. Journal of Synthetic Crystals , 2010, 39(2): 529–533
[9] Wang T, Leng B, Che R, . Biomimetic synthesis of multilayered aragonite aggregates using alginate as crystal growth modifier. Langmuir , 2010, 26(16): 13385–13392
[10] Jimenez-Lopez C, Rodriguez-Navarro A, Dominguez-Vera J M, . Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study. Geochimica et Cosmochimica Acta , 2003, 67(9): 1667–1676
[11] Hernández-Hernández A, Vidal M L, Gómez-Morales J, . Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO3). Journal of Crystal Growth , 2008, 310(7-9): 1754–1759
[12] Kong X D, Cui F Z, Wang X M, . Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth , 2004, 270(1-2): 197–202
[13] Cho K Y, Moon J Y, Lee Y W, . Preparation of self-assembled silk sericin nanoparticles. International Journal of Biological Macromolecules , 2003, 32(1-2): 36–42
[14] Dash B C, Mandal B B, Kundu S C. Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications. Journal of Biotechnology , 2009, 144(4): 321–329
[15] Sarovart S, Sudatis B, Meesilpa P, . The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Reviews on Advanced Materials Science , 2003, 5: 193–198
[16] Kang S H, Hirasawa I, Kim W S, . Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. Journal of Colloid and Interface Science , 2005, 288(2): 496–502
[17] Cai Y R, Jin J, Mei D P, . Effect of silk sericin on assembly of hydroxyapatite nanocrystals into enamel prism-like structure. Journal of Materials Chemistry , 2009, 19(32): 5751–5758
[18] Wu G, Wang Y, Zhu S, . Preparation of ultrafine calcium carbonate particles with micropore dispersion method. Powder Technology , 2007, 172(2): 82–88
[19] Cheng C, Shao Z, Vollrath F. Silk fibroin-regulated crystallization of calcium carbonate. Advanced Functional Materials , 2008, 18(15): 2172–2179
[20] Kawano J, Shimobayashi N, Kitamura M, . Formation process of calcium carbonate from highly supersaturated solution. Journal of Crystal Growth , 2002, 237-239(Part 1): 419–423
[21] Yang H, Yao W, Yang L, . The self-assembly of CaCO3 crystals in the presence of protein. Journal of Crystal Growth , 2009, 311(9): 2682–2688
[22] Xiao J W, Wang Z N, Tang Y C, . Biomimetic mineralization of CaCO3 on a phospholipid monolayer: From an amorphous calcium carbonate precursor to calcite via vaterite. Langmuir , 2010, 26(7): 4977–4983
[23] Xu X, Han J T, Cho K. Deposition of amorphous calcium carbonate hemispheres on substrates. Langmuir , 2005, 21(11): 4801–4804
[24] Chen Y, Xiao J, Wang Z, . Observation of an amorphous calcium carbonate precursor on a stearic acid monolayer formed during the biomimetic mineralization of CaCO3. Langmuir , 2009, 25(2): 1054–1059
[25] Shen F H, Feng Q L, Wang C M. The modulation of collagen on crystal morphology of calcium carbonate. Journal of Crystal Growth , 2002, 242(1-2): 239–244
[26] Huang F, Shen Y, Xie A, . Synthesis of calcite with novel morphologies and epitaxial growth calcium bilirubinate (CaBR) on calcite and effects of dipalmitoylposphatidylcholine (DPPC) monolayer and dextran. Crystal Growth & Design , 2009, 9(2): 722–727
AI Summary AI Mindmap
PDF(452 KB)

Accesses

Citations

Detail

Sections
Recommended

/