[1] Hall E O. The deformation and ageing of mild steel: III Discussion of results.
Proceedings of the Physical Society Section B , 1951, 64(9): 747–753
[2] Hertzberg R W.
Deformation and Fracture Mechanics of Engineering Materials (4th Edition) . New York: Wiley, 1996
[3] Hull D, Bacon D J.
Introduction to Dislocations .
Oxford, UK:
Elsevier, 2001
[4] Kocks U F, Tome C N, Wenk H R.
Texture and Anisotropy .
Cambridge, UK:
Cambridge University Press, 1998
[5] Williams D B, Carter C B.
Transmission Electron Microscopy .
New York:
Plenum Press, 1996
[6] Goldstein J I, Newbury D E, Echlin P,
.
Scanning Electron Microscopy and X-Ray Microanalysis (3rd Edition) .
New York:
Springer, 2003
[7] Venables J A, Binjaya R. Accurate micro-crystallography using electron backscattering patterns.
Philosophical Magazine , 1977, 35(5): 1317–1332
[8] Dingley D J, Randle V. Microtexture determination by electron back-scatter diffraction.
Journal of Materials Science , 1992, 27(17): 4545–4566
[9] Adams B L, Wright S I, Kunze K. Orientation imaging: The emergence of a new microscopy.
Metallurgical Transactions A , 1993, 24(4): 819 -831
[10] Schwarz A J, Kumar M, Field D P,
.
Electron Backscatter Diffraction in Materials Science . New York: Springer, 2000
[11] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation.
Acta Materialia , 2005, 53(3): 555–567
[12] Bingert J F, Mason T A, Kaschner G C,
. Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization.
Metallurgical and Materials Transactions A , 2002, 33(3): 955-963
[13] Bieler T R, Eisenlohr P, Roters F,
. The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals.
International Journal of Plasticity , 2009, 25(9): 1655–1683
[14] Kral M V, Spanos G. Three-dimensional analysis of proeutectoid cementite precipitates.
Acta Materialia , 1999, 47(2): 711–724
[15] Zaefferer S, Wright S I, Raabe D. Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization.
Metallurgical and Materials Transactions A , 2008, 39(2): 374-389
[16] Uchic M D, Groeber M A, Rollett A D. Automated serial sectioning methods for rapid collection of 3-D microstructure data.
JOM , 2011, 63(3): 25–29
[17] Willmott P.
An Introduction to Synchrotron Radiation: Techniques and Applications . New York: Wiley, 2011
[18] Bilderback D H, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources.
Journal of Physics B: Atomic and Molecular Physics , 2005, 38(9): S773–S797
[19] Larson B C, Yang W, Ice G E,
. Three-dimensional X-ray structural microscopy with submicrometre resolution.
Nature , 2002, 415(6874): 887–890
[20] Ice G E, Barabash R I. White beam microdiffraction and dislocations gradients.
Dislocations in Solids , Vol. 13, Chapter 79, 2007, 499-601
[21] Liu W, Ice G E, Larson B C,
. The three-dimensional X-ray crystal microscope: A new tool for materials characterization.
Metallurgical and Materials Transactions A , 2004, 35(7): 1963 -1967
[22] Liu W, Ice G E, Larson B C,
. Nondestructive three-dimensional characterization of grain boundaries by X-ray crystal microscopy.
Ultramicroscopy , 2005, 103(3): 199–204
[23] Wang L, Barabash R I, Yang Y,
. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α-Ti.
Metallurgical and Materials Transactions A , 2011, 42(3): 626 -635
[24] Larson B C, El-Azab A, Yang W,
. Experimental characterization of the mesoscale dislocation density tensor.
Philosophical Magazine , 2007, 87(8-9): 1327–1347
[25] Barabash R I, Ice G E, Larson B C,
. White microbeam diffraction from distorted crystals.
Applied Physics Letters , 2001, 79(6): 749–751
[26] Barabash R I, Ice G E, Walker F J. Quantitative microdiffraction from deformed crystals with unpaired dislocations and dislocation walls.
Journal of Applied Physics , 2003, 93(3): 1457–1464
[27] Barabash R I, Ice G E, Liu W,
. Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.
Micron , 2009, 40(1): 28–36
[28] Maass R, Van Petegem S, Van Swygenhoven H,
. Time-resolved Laue diffraction of deforming micropillars.
Physical Review Letters , 2007, 99(14): 145505 (4 pages)
[29] Maa? R, Van Petegem S, Ma D,
. Smaller is stronger: The effect of strain hardening.
Acta Materialia , 2009, 57(20): 5996–6005
[30] Kirchlechner C, Imrich P J, Grosinger W,
. Expected and unexpected plastic behavior at the micron scale: An
in situ μLaue tensile study.
Acta Materialia , 2012, 60(3): 1252–1258
[31] Villechaise P, Sabatier L, Girard J C. On slip band features and crack initiation in fatigued 316L austenitic stainless steel: Part 1: Analysis by electron back-scattered diffraction and atomic force microscopy.
Materials Science and Engineering A , 2002, 323(1-2): 377–385
[32] Zaefferer S. A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture.
Materials Science and Engineering A , 2003, 344(1-2): 20–30
[33] Li H, Boehlert C J, Bieler T R,
. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt.%) using
in-situ SEM experiments.
Philosophical Magazine , 2012, 92(23): 2923–2946
[34] Nye J F. Some geometrical relations in dislocated crystals.
Acta Metallurgica , 1953, 1(2): 153–162
[35] Arsenlis A, Parks D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density.
Acta Materialia , 1999, 47(5): 1597–1611
[36] Giannuzzi L A, Stevie F A. A review of focused ion beam milling techniques for TEM specimen preparation.
Micron , 1999, 30(3): 197–204
[37] Mayer J, Giannuzzi L A, Kamino T,
. TEM sample preparation and FIB-induced damage.
MRS Bulletin , 2007, 32(5): 400–407
[38] Kalidindi S R, Bronkhorst C A, Anand L. Crystallographic texture evolution in bulk deformation processing of fcc metals.
Journal of the Mechanics and Physics of Solids , 1992, 40(3): 537–569
[39] Raabe D, Sachtleber M, Zhao Z,
. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation.
Acta Materialia , 2001, 49(17): 3433–3441
[40] Musienko A, Tatschl A, Schmidegg K,
. Three-dimensional finite element simulation of a polycrystalline copper specimen.
Acta Materialia , 2007, 55(12): 4121–4136
[41] Roters F, Eisenlohr P, Hantcherli L,
. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications.
Acta Materialia , 2010, 58(4): 1152–1211
[42] Poulsen H F, Garbe S, Lorentzen T,
. Applications of high-energy synchrotron radiation for structural studies of polycrystalline materials.
Journal of Synchrotron Radiation , 1997, 4(3): 147–154
[43] Lauridsen E M, Schmidt S, Suter R M,
. Tracking: a method for structural characterization of grains in powders or polycrystals.
Journal of Applied Crystallography , 2001, 34(6): 744–750
[44] Poulsen H F, Nielsen S F, Lauridsen E M,
. Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders.
Journal of Applied Crystallography , 2001, 34(6): 751–756
[45] Margulies L, Winther G, Poulsen H F. In situ measurement of grain rotation during deformation of polycrystals.
Science , 2001, 291(5512): 2392–2394
[46] Poulsen H F.
Three-Dimensional X-ray Diffraction Microscopy . Berlin: Springer, 2004
[47] Lienert U, Li S F, Hefferan C M,
. High-energy diffraction microscopy at the advanced photon source.
JOM , 2011, 63(7): 70–77
[48] Poulsen H F. An introduction to three-dimensional X-ray diffraction microscopy.
Journal of Applied Crystallography , 2012, 45(6): 1084–1097
[49] Suter R M, Hennessy D, Xiao C,
. Forward modeling method for microstructure reconstruction using X-ray diffraction microscopy: Single-crystal verification.
Review of Scientific Instruments , 2006, 77(12): 123905 (12 pages)
[50] Schmidt S, Olsen U L, Poulsen H F,
. Direct observation of 3-D grain growth in Al-0.1% Mn.
Scripta Materialia , 2008, 59(5): 491–494
[51] Li S F, Lind J, Hefferan C M,
. Three-dimensional plastic response in polycrystalline copper via near-field high-energy X-ray diffraction microscopy.
Journal of Applied Crystallography , 2012, 45(6): 1098–1108
[52] Margulies L, Lorentzen T, Poulsen H F,
. Strain tensor development in a single grain in the bulk of a polycrystal under loading.
Acta Materialia , 2002, 50(7): 1771–1779
[53] Martins R V, Margulies L, Schmidt S,
. Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile sample.
Materials Science and Engineering A , 2004, 387-389: 84–88
[54] Aydiner C C, Bernier J V, Clausen B,
. Evolution of stress in individual grains and twins in a magnesium alloy aggregate.
Physical Review B , 2009, 80(2): 024113 (6 pages)
[55] Bernier J V, Barton N R, Lienert U,
. Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis.
Journal of Strain Analysis for Engineering Design , 2011, 46(7): 527–547
[56] Beaudoin A J, Obstalecki M, Storer R,
. Validation of a crystal plasticity model using high energy diffraction microscopy.
Modelling and Simulation in Materials Science and Engineering , 2012, 20(2): 024006 (14 pages)
[57] Nye J F.
Physical Properties of Crystals: Their Representation by Tensors and Matrices .
New York:
Oxford University Press, 1985
[58] Oddershede J, Schmidt S, Poulsen H F,
. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction.
Materials Characterization , 2011, 62(7): 651–660
[59] Oddershede J, Schmidt S, Poulsen H F,
. Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction.
Journal of Applied Crystallography , 2010, 43(3): 539–549
[60] Oddershede J, Camin B, Schmidt S,
. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction.
Acta Materialia , 2012, 60(8): 3570–3580
[61] Christian J W, Mahajan S. Deformation Twinning.
Progress in Materials Science , 1995, 39(1-2): 1–157
[62] Tome C N, Maudlin P J, Lebensohn R A,
. Mechanical response of zirconium- I. Derivation of a polycrystal constitutive law and finite element analysis.
Acta Materialia , 2001, 49(15): 3085–3096
[63] Meyers M A, Vohringer O, Lubarda V A,
. The onset of twinning in metals: A constitutive description.
Acta Materialia , 2001, 49(19): 4025–4039
[64] Beyerlein I J, Tome C N. A probabilistic twin nucleation model for HCP polycrystalline metals.
Proceedings of the Royal Society of London Series A , 2010, 466(2121): 2517–2544
[65] Ma A, Roters F, Raabe D,
. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations.
Acta Materialia , 2006, 54(8): 2169–2179
[66] Capolungo L, Marshall P E, McCabe R J,
. Nucleation and growth of twins in Zr: A statistical study.
Acta Materialia , 2009, 57(20): 6047–6056
[67] Beyerlein I J, Capolungo L, Marshall P E,
. Statistical analyses of deformation twinning in magnesium.
Philosophical Magazine , 2010, 90(16): 2161–2190
[68] Wang L, Yang Y, Eisenlohr P,
. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium.
Metallurgical and Materials Transactions A , 2010, 41(2): 421 -430
[69] Wang L, Eisenlohr P, Yang Y,
. Nucleation of paired twins at grain boundaries in titanium.
Scripta Materialia , 2010, 63(8): 827–830
[70] Young M L, Almer J D, Daymond M R,
. Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel.
Acta Materialia , 2007, 55(6): 1999–2011
[71] Cheng S, Wang Y D, Choo H,
. An assessment of the contributing factors to the superior properties of a nanostructured steel using
in situ high-energy X-ray diffraction.
Acta Materialia , 2010, 58(7): 2419–2429
[72] Colas K B, Motta A T, Almer J D,
. In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation.
Acta Materialia , 2010, 58(20): 6575–6583
[73] Weisser M A, Evans A D, Van Petegem S,
. In situ room temperature tensile deformation of a 1% CrMoV bainitic steel using synchrotron and neutron diffraction.
Acta Materialia , 2011, 59(11): 4448–4457
[74] Guinier A, Fournet G.
Small-Angle Scattering of X-rays . New York: Wiley, 1955
[75] Pan X, Wu X, Mo K,
. Lattice strain and damage evolution of 9-12%Cr ferritic/martensitic steel during
in situ tensile test by X-ray diffraction and small angle scattering.
Journal of Nuclear Materials , 2010, 407(1): 10–15
[76] Wang L, Li M, Almer J D. In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering.
Journal of Nuclear Materials (submitted)
[77] Ice G E, Budai J D, Pang J W L. The race to X-ray microbeam and nanobeam science.
Science , 2011, 334(6060): 1234–1239
[78] Was G S.
Fundamentals of Radiation Materials Science .
Berlin:
Springer, 2007