Circular dichroism of graphene oxide: the chiral structure model

Jing CAO1,2, Hua-Jie YIN2, Rui SONG1()

PDF(691 KB)
PDF(691 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (1) : 83-90. DOI: 10.1007/s11706-013-0192-x
COMMUNICATION
COMMUNICATION

Circular dichroism of graphene oxide: the chiral structure model

  • Jing CAO1,2, Hua-Jie YIN2, Rui SONG1()
Author information +
History +

Abstract

We have observed the circular dichroism signal of dilute graphene oxide (GO), then systematically investigated the chirality of GO and established a probable chiral unit model. This study may open up a new field for understanding the structure of GO and lay the foundation for fabrication of GO-based materials.

Keywords

graphene oxide (GO) / circular dichroism / XPS / chiral model

Cite this article

Download citation ▾
Jing CAO, Hua-Jie YIN, Rui SONG. Circular dichroism of graphene oxide: the chiral structure model. Front Mater Sci, 2013, 7(1): 83‒90 https://doi.org/10.1007/s11706-013-0192-x

References

[1] Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society , 1958, 80(6): 1339
[2] Gao W, Alemany L B, Ci L J, . New insights into the structure and reduction of graphite oxide. Nature Chemistry , 2009, 1(5): 403-408
[3] Marcano D C, Kosynkin D V, Berlin J M, . Improved synthesis of graphene oxide. ACS Nano , 2010, 4(8): 4806-4814
[4] Kim J, Cote L J, Huang J X. Two dimensional soft material: new faces of graphene oxide. Accounts of Chemical Research , 2012, 45(8): 1356-1364
[5] Li D, Müller M B, Gilje S, . Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology , 2008, 3(2): 101-105
[6] Nair R R, Wu H A, Jayaram P N, . Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science , 2012, 335(6067): 442-444
[7] Wei Z Q, Wang D B, Kim S, . Nanoscale tunable reduction of graphene oxide for graphene electronics. Science , 2010, 328(5984): 1373-1376
[8] Dikin D A, Stankovich S, Zimney E J, . Preparation and characterization of graphene oxide paper. Nature , 2007, 448(7152): 457-460
[9] Dreyer D R, Park S, Bielawski C W, . The chemistry of graphene oxide. Chemical Society Reviews , 2010, 39(1): 228-240
[10] Kim J, Cote L J, Kim F, . Graphene oxide sheets at interfaces. Journal of the American Chemical Society , 2010, 132(23): 8180-8186
[11] Hamley I W. Introduction to Soft Matter: Polymers, Colloids, Amphiphiles and Liquid Crystals. New York: Wiley, 2000
[12] Lerf A, He H Y, Forster M, . Structure of graphite oxide revisited. Journal of Physical Chemistry B , 1998, 102(23): 4477-4482
[13] Szabó T, Berkesi O, Forgó P, . Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of Materials , 2006, 18(11): 2740-2749
[14] Cai W W, Piner R D, Stadermann F J, . Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science , 2008, 321(5897): 1815-1817
[15] Casabianca L B, Shaibat M A, Cai W W, . NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. Journal of the American Chemical Society , 2010, 132(16): 5672-5676
[16] Erickson K, Erni R, Lee Z, . Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials , 2010, 22(40): 4467-4472
[17] Johari P, Shenoy V B. Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano , 2011, 5(9): 7640-7647
[18] Hossain M Z, Johns J E, Bevan K H, . Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nature Chemistry , 2012, 4(4): 305-309
[19] Wei W L, Qu K G, Ren J S, . Chiral detection using reusable fluorescent amylose-functionalized graphene. Chemical Science , 2011, 2(10): 2050-2056
[20] Fan Z, Govorov A O. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Letters , 2012, 12(6): 3283-3289
[21] Greenfield N J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature Protocols , 2006, 1(6): 2527-2535
[22] Hazen R M, Sholl D S. Chiral selection on inorganic crystalline surfaces. Nature Materials , 2003, 2(6): 367-374
[23] Micali N, Engelkamp H, van Rhee P G, . Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chemistry , 2012, 4(3): 201-207
[24] Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano , 2011, 5(4): 2908-2915
[25] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Communications , 2011, 2: 571
[26] Zhu Y, James D K, Tour J M. New routes to graphene, graphene oxide and their related applications. Advanced Materials , 2012, 24(36): 4924-4955
[27] Paul D R. Marerials science. Creating new types of carbon-based membranes. Science , 2012, 335(6067): 413-414
[28] Yin H J, Tang H J, Wang D, . Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano , 2012, 6(9): 8288-8297
[29] Dimiev A, Kosynkin D V, Alemany L B, . Pristine graphite oxide. Journal of the American Chemical Society , 2012, 134(5): 2815-2822
[30] Loh K P, Bao Q, Eda G, . Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry , 2010, 2(12): 1015-1024
AI Summary AI Mindmap
PDF(691 KB)

Accesses

Citations

Detail

Sections
Recommended

/