[1] Weiner S, Addadi L. Crystallization pathways in biomineralization.
Annual Review of Materials Research , 2011, 41(1): 21–40
[2] Politi Y, Arad T, Klein E,
. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
Science , 2004, 306(5699): 1161–1164
[3] Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization.
Advanced Materials , 2003, 15(12): 959–970
[4] Deng H, Wang X, Du C,
. Combined effect of ion concentration and functional groups on the surface chemistry modulated CaCO
3 crystallization.
CrystEngComm , 2012, 14(20): 6647–6653
[5] Ren D, Li Z, Gao Y,
. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.
Biomedical Materials , 2010, 5(5): 055009
[6] Aizenberg J, Black A J, Whitesides G M. Control of crystal nucleation by patterned self-assembled monolayers.
Nature , 1999, 398(6727): 495–498
[7] Kuther J, Seshadri R, Knoll W,
. Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold.
Journal of Materials Chemistry , 1998, 8(3): 641–650
[8] Mann S, Heywood B R, Rajam S,
. Controlled crystallization of CaCO
3 under stearic acid monolayers.
Nature , 1988, 334(6184): 692–695
[9] Chen Y, Xiao J, Wang Z,
. Observation of an amorphous calcium carbonate precursor on a stearic acid monolayer formed during the biomimetic mineralization of CaCO
3.
Langmuir , 2009, 25(2): 1054–1059
[10] Dey A, Bomans P H H, Müller F A,
. The role of prenucleation clusters in surface-induced calcium phosphate crystallization.
Nature Materials , 2010, 9(12): 1010–1014
[11] Ren Y J, Zhang H, Huang H,
.
In vitro behavior of neural stem cells in response to different chemical functional groups.
Biomaterials , 2009, 30(6): 1036–1044
[12] Sellers H, Ulman A, Shnidman Y,
. Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers.
Journal of the American Chemical Society , 1993, 115(21): 9389–9401
[13] Laibinis P E, Whitesides G M.
ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities.
Journal of the American Chemical Society , 1992, 114(6): 1990–1995
[14] Strong L, Whitesides G M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies.
Langmuir , 1988, 4(3): 546–558
[15] Finklea H, Avery S, Lynch M,
. Blocking oriented monolayers of alkyl mercaptans on gold electrodes.
Langmuir , 1987, 3(3): 409–413
[16] Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver.
Journal of the American Chemical Society , 1999, 121(18): 4500–4509
[17] Schreiber F. Structure and growth of self-assembling monolayers.
Progress in Surface Science , 2000, 65(5–8): 151–257
[18] Widrig C A, Alves C A, Porter M D. Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces.
Journal of the American Chemical Society , 1991, 113(8): 2805–2810
[19] Yu X L, Zhang B, Wang X M,
. Cancer cell proliferation controlled by surface chemistry in its microenvironment.
Frontiers of Materials Science , 2011, 5(4): 412–416
[20] Aizenberg J. Self-assembled monolayers as templates for inorganic crystallization: a bio-inspired approach. In: Novoa J J, Braga D, Addadi L, eds.
Engineering of Crystalline Materials Properties: State of the Art in Modeling, Design and Applications . Springer, 2008, 17 –32
[21] Wurm D B, Brittain S T, Kim Y-T. Controlled nucleation of inorganic crystals on self-assembled monolayers.
Journal of Materials Science Letters , 1996, 15(15): 1285–1287
[22] Küther J, Tremel W. Template induced crystallization of biominerals on self-assembled monolayers of alkylthiols.
Thin Solid Films , 1998, 327–329: 554–558
[23] Mann S.
Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry .
New York, USA:
Oxford University Press, 2001
[24] Mann S, Ozin G A. Sythesis of inorganic materials with complex form.
Nature , 1996, 382(6589): 313–318
[25] Mann S, Archibald D D, Didymus J M,
. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthe-sis.
Science , 1993, 261(5126): 1286–1292
[26] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry.
Nature , 1993, 365(6446): 499–505
[27] Zhang Z, Xie Y, Xu X,
. Transformation of amorphous calcium carbonate into aragonite.
Journal of Crystal Growth , 2012, 343(1): 62–67
[28] Guo Y, Tang H, Zhou Y,
. Evolution mechanism of calcium carbonate in solution.
Chinese Journal of Chemical Physics , 2010, 23(6): 731–737
[29] Xu X R, Cai A H, Liu R,
. The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate.
Journal of Crystal Growth , 2008, 310(16): 3779– 3787
[30] Politi Y, Metzler R A, Abrecht M,
. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.
Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(45): 17362–17366
[31] Dai L, Cheng X, Gower L B. Transition bars during transformation of an amorphous calcium carbonate precursor.
Chemistry of Materials , 2008, 20(22): 6917–6928
[32] Cai A, Xu X, Pan H,
. Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation.
Journal of Physical Chemistry C , 2008, 112(30): 11324–11330
[33] Spanos N, Koutsoukos P G. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase.
Journal of Crystal Growth , 1998, 191(4): 783–790
[34] Ogino T, Suzuki T, Sawada K. The formation and transformation mechanism of calcium carbonate in water.
Geochimica et Cosmochimica Acta , 1987, 51(10): 2757–2767
[35] Hasse B, Ehrenberg H, Marxen J C,
. Calcium carbonate modifications in the mineralized shell of the freshwater snail
Biomphalaria glabrata.
Chemistry- A European Journal , 2000, 6(20): 3679–3685
[36] Becker A, Bismayer U, Epple M,
. Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea
Porcellio scaber.
Dalton Transactions , 2003, (4): 551–555
[37] Raiteri P, Gale J D. Water is the key to nonclassical nucleation of amorphous calcium carbonate.
Journal of the American Chemical Society , 2010, 132(49): 17623–17634
[38] Liu Z H, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H
2O–CO
2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H
2O+ CO
2 H
+ + HCO
-3.
Geochimica et Cosmochimica Acta , 1997, 61(14): 2879–2889
[39] De Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth.
Reviews in Mineralogy and Geochemistry , 2003, 54(1): 57–93
[40] Dickerson M B, Sandhage K H, Naik R R. Protein- and peptide-directed syntheses of inorganic materials.
Chemical Reviews , 2008, 108(11): 4935–4978
[41] Meldrum F C, C?lfen H. Controlling mineral morphologies and structures in biological and synthetic systems.
Chemical Reviews , 2008, 108(11): 4332–4432
[42] Fang P A, Conway J F, Margolis H C,
. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale.
Proceedings of the National Academy of Sciences of the United States of America , 2011, 108(34): 14097–14102
[43] Teng H H, Dove P M, De Yoreo J J. Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws.
Geochimica et Cosmochimica Acta , 2000, 64(13): 2255–2266
[44] Teng H H, Dove P M, Orme C A. Thermodynamics of calcite growth: baseline for understanding biomineral formation.
Science , 1998, 282(5389): 724–727
[45] Frank F. The influence of dislocations on crystal growth.
Discussions of the Faraday Society , 1949, 5: 48–54
[46] Gebauer D, V?lkel A, C?lfen H. Stable prenucleation calcium carbonate clusters.
Science , 2008, 322(5909): 1819–1822
[47] C?lfen H. Biomineralization: A crystal-clear view.
Nature Materials , 2010, 9(12): 960–961
[48] Pouget E M, Bomans P H H, Goos J A C M,
. The initial stages of template-controlled CaCO
3 formation revealed by cryo-TEM.
Science , 2009, 323(5920): 1455–1458
[49] Meldrum F C, Sear R P. Now you see them.
Science , 2008, 322(5909): 1802–1803
[50] Stephens C J, Kim Y Y, Evans S D,
. Early stages of crystallization of calcium carbonate revealed in picoliter droplets.
Journal of the American Chemical Society , 2011, 133(14): 5210–5213
[51] C?lfen H, Antonietti M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers.
Langmuir , 1998, 14(3): 582–589
[52] Neira-Carrillo A, Acevedo D F, Miras M C,
. Influence of conducting polymers based on carboxylated polyaniline on
in vitro CaCO
3 crystallization.
Langmuir , 2008, 24(21): 12496–12507
[53] Jayaraman A, Subramanyam G, Sindhu S,
. Biomimetic synthesis of calcium carbonate thin films using hydroxylated poly(methyl methacrylate) (PMMA) template.
Crystal Growth & Design , 2007, 7(1): 142–146
[54] Falini G, Manara S, Fermani S,
. Polymeric admixtures effects on calcium carbonate crystallization: relevance to cement industries and biomineralization.
CrystEngComm , 2007, 9(12): 1162–1170
[55] Wang Q, Wang X M, Tian L L,
.
In situ remineralizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide.
Soft Matter , 2011, 7(20): 9673–9680