Calcium carbonate crystallization controlled by functional groups: A mini-review

Hua DENG1,2, Xing-Can SHEN2, Xiu-Mei WANG1, Chang DU3()

PDF(259 KB)
PDF(259 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (1) : 62-68. DOI: 10.1007/s11706-013-0191-y
MINI-REVIEW

Calcium carbonate crystallization controlled by functional groups: A mini-review

  • Hua DENG1,2, Xing-Can SHEN2, Xiu-Mei WANG1, Chang DU3()
Author information +
History +

Abstract

Various functional groups have been suggested to play essential roles on biomineralization of calcium carbonate (CaCO3) in natural system. 2D and 3D models of regularly arranged functional groups have been established to investigate their effect on CaCO3 crystallization. This mini-review summarizes the recent progress and the future development is prospected.

Keywords

functional group / biomineralization / crystallization / CaCO3

Cite this article

Download citation ▾
Hua DENG, Xing-Can SHEN, Xiu-Mei WANG, Chang DU. Calcium carbonate crystallization controlled by functional groups: A mini-review. Front Mater Sci, 2013, 7(1): 62‒68 https://doi.org/10.1007/s11706-013-0191-y

References

[1] Weiner S, Addadi L. Crystallization pathways in biomineralization. Annual Review of Materials Research , 2011, 41(1): 21–40
[2] Politi Y, Arad T, Klein E, . Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science , 2004, 306(5699): 1161–1164
[3] Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials , 2003, 15(12): 959–970
[4] Deng H, Wang X, Du C, . Combined effect of ion concentration and functional groups on the surface chemistry modulated CaCO3 crystallization. CrystEngComm , 2012, 14(20): 6647–6653
[5] Ren D, Li Z, Gao Y, . Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization. Biomedical Materials , 2010, 5(5): 055009
[6] Aizenberg J, Black A J, Whitesides G M. Control of crystal nucleation by patterned self-assembled monolayers. Nature , 1999, 398(6727): 495–498
[7] Kuther J, Seshadri R, Knoll W, . Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold. Journal of Materials Chemistry , 1998, 8(3): 641–650
[8] Mann S, Heywood B R, Rajam S, . Controlled crystallization of CaCO3 under stearic acid monolayers. Nature , 1988, 334(6184): 692–695
[9] Chen Y, Xiao J, Wang Z, . Observation of an amorphous calcium carbonate precursor on a stearic acid monolayer formed during the biomimetic mineralization of CaCO3. Langmuir , 2009, 25(2): 1054–1059
[10] Dey A, Bomans P H H, Müller F A, . The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Materials , 2010, 9(12): 1010–1014
[11] Ren Y J, Zhang H, Huang H, . In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials , 2009, 30(6): 1036–1044
[12] Sellers H, Ulman A, Shnidman Y, . Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society , 1993, 115(21): 9389–9401
[13] Laibinis P E, Whitesides G M. ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. Journal of the American Chemical Society , 1992, 114(6): 1990–1995
[14] Strong L, Whitesides G M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir , 1988, 4(3): 546–558
[15] Finklea H, Avery S, Lynch M, . Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir , 1987, 3(3): 409–413
[16] Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. Journal of the American Chemical Society , 1999, 121(18): 4500–4509
[17] Schreiber F. Structure and growth of self-assembling monolayers. Progress in Surface Science , 2000, 65(5–8): 151–257
[18] Widrig C A, Alves C A, Porter M D. Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces. Journal of the American Chemical Society , 1991, 113(8): 2805–2810
[19] Yu X L, Zhang B, Wang X M, . Cancer cell proliferation controlled by surface chemistry in its microenvironment. Frontiers of Materials Science , 2011, 5(4): 412–416
[20] Aizenberg J. Self-assembled monolayers as templates for inorganic crystallization: a bio-inspired approach. In: Novoa J J, Braga D, Addadi L, eds. Engineering of Crystalline Materials Properties: State of the Art in Modeling, Design and Applications . Springer, 2008, 17 –32
[21] Wurm D B, Brittain S T, Kim Y-T. Controlled nucleation of inorganic crystals on self-assembled monolayers. Journal of Materials Science Letters , 1996, 15(15): 1285–1287
[22] Küther J, Tremel W. Template induced crystallization of biominerals on self-assembled monolayers of alkylthiols. Thin Solid Films , 1998, 327–329: 554–558
[23] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry . New York, USA: Oxford University Press, 2001
[24] Mann S, Ozin G A. Sythesis of inorganic materials with complex form. Nature , 1996, 382(6589): 313–318
[25] Mann S, Archibald D D, Didymus J M, . Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthe-sis. Science , 1993, 261(5126): 1286–1292
[26] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature , 1993, 365(6446): 499–505
[27] Zhang Z, Xie Y, Xu X, . Transformation of amorphous calcium carbonate into aragonite. Journal of Crystal Growth , 2012, 343(1): 62–67
[28] Guo Y, Tang H, Zhou Y, . Evolution mechanism of calcium carbonate in solution. Chinese Journal of Chemical Physics , 2010, 23(6): 731–737
[29] Xu X R, Cai A H, Liu R, . The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate. Journal of Crystal Growth , 2008, 310(16): 3779– 3787
[30] Politi Y, Metzler R A, Abrecht M, . Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(45): 17362–17366
[31] Dai L, Cheng X, Gower L B. Transition bars during transformation of an amorphous calcium carbonate precursor. Chemistry of Materials , 2008, 20(22): 6917–6928
[32] Cai A, Xu X, Pan H, . Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation. Journal of Physical Chemistry C , 2008, 112(30): 11324–11330
[33] Spanos N, Koutsoukos P G. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth , 1998, 191(4): 783–790
[34] Ogino T, Suzuki T, Sawada K. The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta , 1987, 51(10): 2757–2767
[35] Hasse B, Ehrenberg H, Marxen J C, . Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chemistry- A European Journal , 2000, 6(20): 3679–3685
[36] Becker A, Bismayer U, Epple M, . Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber. Dalton Transactions , 2003, (4): 551–555
[37] Raiteri P, Gale J D. Water is the key to nonclassical nucleation of amorphous calcium carbonate. Journal of the American Chemical Society , 2010, 132(49): 17623–17634
[38] Liu Z H, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O–CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+ CO2 H+ + HCO-3. Geochimica et Cosmochimica Acta , 1997, 61(14): 2879–2889
[39] De Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry , 2003, 54(1): 57–93
[40] Dickerson M B, Sandhage K H, Naik R R. Protein- and peptide-directed syntheses of inorganic materials. Chemical Reviews , 2008, 108(11): 4935–4978
[41] Meldrum F C, C?lfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews , 2008, 108(11): 4332–4432
[42] Fang P A, Conway J F, Margolis H C, . Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108(34): 14097–14102
[43] Teng H H, Dove P M, De Yoreo J J. Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. Geochimica et Cosmochimica Acta , 2000, 64(13): 2255–2266
[44] Teng H H, Dove P M, Orme C A. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science , 1998, 282(5389): 724–727
[45] Frank F. The influence of dislocations on crystal growth. Discussions of the Faraday Society , 1949, 5: 48–54
[46] Gebauer D, V?lkel A, C?lfen H. Stable prenucleation calcium carbonate clusters. Science , 2008, 322(5909): 1819–1822
[47] C?lfen H. Biomineralization: A crystal-clear view. Nature Materials , 2010, 9(12): 960–961
[48] Pouget E M, Bomans P H H, Goos J A C M, . The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science , 2009, 323(5920): 1455–1458
[49] Meldrum F C, Sear R P. Now you see them. Science , 2008, 322(5909): 1802–1803
[50] Stephens C J, Kim Y Y, Evans S D, . Early stages of crystallization of calcium carbonate revealed in picoliter droplets. Journal of the American Chemical Society , 2011, 133(14): 5210–5213
[51] C?lfen H, Antonietti M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir , 1998, 14(3): 582–589
[52] Neira-Carrillo A, Acevedo D F, Miras M C, . Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization. Langmuir , 2008, 24(21): 12496–12507
[53] Jayaraman A, Subramanyam G, Sindhu S, . Biomimetic synthesis of calcium carbonate thin films using hydroxylated poly(methyl methacrylate) (PMMA) template. Crystal Growth & Design , 2007, 7(1): 142–146
[54] Falini G, Manara S, Fermani S, . Polymeric admixtures effects on calcium carbonate crystallization: relevance to cement industries and biomineralization. CrystEngComm , 2007, 9(12): 1162–1170
[55] Wang Q, Wang X M, Tian L L, . In situ remineralizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide. Soft Matter , 2011, 7(20): 9673–9680
AI Summary AI Mindmap
PDF(259 KB)

Accesses

Citations

Detail

Sections
Recommended

/