[1] Cerjak H, Hofer P, Schaffernak B. The influence of microstructural aspects on the service behaviour of advanced power plant steels.
ISIJ International , 1999, 39(9): 874–888
[2] Masuyama F. History of power plants and progress in heat resistant steels.
ISIJ International , 2001, 41(6): 612–625
[3] Maruyama K, Sawada K, Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel.
ISIJ International , 2001, 41(6): 641–653
[4] Agamennone R, Blum W, Gupta C,
. Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels.
Acta Materialia , 2006, 54(11): 3003–3014
[5] Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors.
Journal of Nuclear Materials , 2007, 371(1–3): 37–52
[6] Klueh R L, Alexander D J, Sokolov M A. Effect of chromium, tungsten, tantalum and boron on mechanical properties of 5–9Cr–WVTaB steels.
Journal of Nuclear Materials , 2002, 304(2–3): 139–152
[7] Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels.
Metallurgical Transactions A , 1991, 22(10): 2225–2235
[8] Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion.
Journal of Nuclear Materials , 1995, 227(1–2): 11–23
[9] van der Schaaf B, Gelles D S, Jitsukawa S,
. Progress and critical issues of reduced activation ferritic/martensitic steel development.
Journal of Nuclear Materials , 2000, 283–287: 52–59
[10] Jitsukawa S, Tamura M, van der Schaaf B,
. Development of an extensive database of mechanical and physical porperties for reduced-activation martensitic steel F82H.
Journal of Nuclear Materials , 2002, 307–311: 179–186
[11] Huang Q Y, Li J G, Chen Y X. Study of irradiation effects in China low activation martensitic steel CLAM.
Journal of Nuclear Materials , 2004, 329–333: 268–272
[12] Abe F, Nakazawa S. Microstructural evolution and creep behaviour of bainitic, martensitic and martensite-ferrite dual phase Cr–2W steels.
Materials Science and Technology , 1992, 8(12): 1063–1069
[13] Liu X Y, Fujita T. Effect of chromium content on creep rupture properties of a high chromium ferritic heat resisting steel.
ISIJ International , 1989, 29(8): 680–686
[14] Gustafson A, Agren J. Possible effect of Co on coarsening of M
23C
6 carbide and Orowan stress in a 9% Cr Steel.
ISIJ International , 2001, 41(4): 356–360
[15] Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation.
Key Engineering Materials , 2007, 345–346: 569–572
[16] Abe F, Semba H, Sakuraya T. Effect of boron on microstructure and creep deformation behavior of tempered martensitic 9Cr steel.
Materials Science Forum , 2007, 539–543: 2982–2987
[17] Hattestrand M, Andren H O. Boron distribution in 9–12% chromium steels.
Materials Science and Engineering A , 1999, 270(1): 33–37
[18] Ennis P J, Quadakkers J W. The steam oxidation resistance of 9–12% Cr steels. In: Lecomte-Beckers J, Carton M, Schubert F,
., eds.
Materials for Advanced Power Engineering 2002: Proceedings of the 7th Liege Conference , 2002, 1131–1142
[19] Ishitsuka T, Inoue Y, Ogawa H.Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel.
Oxidation of Metals , 2004, 61(1): 125–142
[20] Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel.
Acta Materialia , 2009, 57(17): 5093–5106
[21] Aghajani A, Richter F, Somsen C,
. On the formation and growth of Mo-rich Laves-phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel.
Scripta Materialia , 2009, 61(11): 1068–1071
[22] Hosoi Y, Wade N, Kunimitsu S,
. Precipitation behavior of Laves-phase and its effect on toughness of 9Cr–2Mo ferritic-martensitic steel.
Journal of Nuclear Materials , 1986, 141–143: 461–467
[23] Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides.
International Journal of Pressure Vessels and Piping , 2007, 84(1–2): 3–12
[24] Yoshizawa M, Igarashi M. Long-term creep deformation characteristics of advanced ferritic steels for USC power plants.
International Journal of Pressure Vessels and Piping , 2007, 84(1–2): 37–43
[25] Kostka A, Tak K G, Hellmig R J,
. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels.
Acta Materialia , 2007, 55(2): 539–550
[26] Ghassemi Armaki H, Chen R P, Maruyama K,
. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12% Cr ferritic steels.
Metallurgical and Materials Transactions A , 2011, 42(10): 3084–3094
[27] Blum W. In: Mughrabi H, ed.
Plastic Deformation and Fracture of Materials . In: Cahn R W, Haasen P, Kramer E J, eds.
Materials Science and Technology (Volumn. 6). Weinheim: VCH , 1993, 359–405
[28] Eggeler G, Blum W. Coarsening of the dislocation-structure after stress reduction during creep of NaCl single-crystals.
Philosophical Magazine , 1981, 44(5): 1065–1084
[29] Sawada K, Taneike M, Kimura K,
.
In situ observation of recovery of lath structure in 9% chromium creep resistant steel.
Materials Science and Technology , 2003, 19(6): 739–742
[30] Kimura K, Kushima H, Abe F,
. Inherent creep strength and long term creep strength properties of ferritic steels.
Materials Science and Engineering A , 1997, 234–236: 1079–1082
[31] Kimura K, Toda Y, Kushima H,
. Creep strength of high chromium steel with ferrite matrix.
International Journal of Pressure Vessels and Piping , 2010, 87(6): 282–288
[32] Panait C G, Bendick W, Fuchsmann A,
. Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600°C.
International Journal of Pressure Vessels and Piping , 2010, 87(6): 326–335
[33] Abe F. Bainitic and martensitic creep-resistant steels.
Current Opinion in Solid State and Materials Science , 2004, 8(3–4): 305–311
[34] Hu P, Yan W, Sha W,
. Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep.
Journal of Materials Science & Technology , 2011, 27(4): 344–351
[35] Sawada K, Maruyama K, Hasegawa Y,
. Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure.
Key Engineering Materials , 2000, 171–174: 109–114
[36] Abe F, Nakazawa S, Araki H,
. The role of microstructural instability on creep-behavior of a martensitic 9Cr–2W steel.
Metallurgical Transactions A , 1992, 23(2): 469–477
[37] Dimmler G, Weinert P, Kozeschnik E,
. Quantification of the Laves-phase in advanced 9–12% Cr steels using a standard SEM.
Materials Characterization , 2003, 51(5): 341–352
[38] Eggeler G, Nilsvang N, Ilschner B. Microstructural changes in a 12%Cr steel during creep.
Steel Research , 1987, 58(2): 97–103
[39] Eggeler G, Earthman J C, Nilsvang N,
. Microstructural study of creep rupture in a 12% chromium ferritic steel.
Acta Metallurgica , 1989, 37(1): 49–60
[40] Dronhofer A, Pesicka J, Dlouhy A,
. On the nature of internal interfaces in tempered martensite ferritic steels.
Zeitschrift fur Metallkunde , 2003, 94(5): 511–520
[41] Tak K-G, Schulz U, Eggeler G. On the effect of micrograin crystallography on creep of FeCr alloys.
Materials Science and Engineering A , 2009, 510–511: 121–129
[42] Pesicka J, Kuzel R, Dronhofer A,
. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels.
Acta Materialia , 2003, 51(16): 4847–4862
[43] Pesicka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels.
Materials Science and Engineering A , 2004, 387–389: 176–180
[44] Kostka A, Tak K G, Hellmig R J,
. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels.
Acta Materialia , 2007, 55(2): 539–550
[45] Keller C, Margulies M M, Hadjem-Hamouche Z,
. Influence of the temperature on the tesile behaviour of a modified 9Cr–1Mo T91 martensitic steel.
Materials Science and Engineering A , 2010, 527(24–25): 6758–6764
[46] Qin Y, G?tz G, Blum W. Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1.
Materials Science and Engineering A , 2003, 341(1–2): 211–215
[47] Blum W, G?tz G. Evolution of dislocation structure in martensitic steels: the subgrain size as a sensor for creep strain and residual creep life.
Steel Research , 1999, 70(7): 274–278
[48] Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels — Experimental investigations and modelling.
ISIJ International , 2003, 43(3): 420–427
[49] Polcik P, Sailer T, Blum W,
. On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep — a comparison of data.
Materials Science and Engineering A , 1999, 260(1–2): 252–259
[50] Panait C G, Zielińska-Lipiec A, Koziel T,
. Evolution of dislocation density, size of subgrains and MX-type precipitatesin a P91 steel during creep and during thermal ageing at 600°C for more than 100,000 h.
Materials Science and Engineering A , 2010, 527(16–17): 4062–4069
[51] Eggeler G. The effect of long-term creep on particle coarsening in tempered martensite ferritic steels.
Acta Metallurgica , 1989, 37(12): 3225–3234
[52] Sawada K, Taneike M, Kimura K,
. Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel.
ISIJ International , 2004, 44(7): 1243–1249
[53] Ghassemi-Armaki H, Chen R P, Maruyama K,
. Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels.
Materials Letters , 2009, 63(28): 2423–2425
[54] Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr–1W steel.
Metallurgical Transactions A , 2003, 34(4): 913–925
[55] Abe F, Nakazawa S. The effect of tungsten on creep — behavior of tempered martensitic 9Cr steels.
Metallurgical Transactions A , 1992, 23(11): 3025–3034
[56] Aghajani A, Somsen Ch, Pesicka J,
. Microstructural evolution in T24, a modified 2(1/4)Cr–1Mo steel during creep after different heat treatments.
Materials Science and Engineering A , 2009, 510–511: 130–135
[57] Bendick W, Gabrel J, Hahn B,
. New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application.
International Journal of Pressure Vessels and Piping , 2007, 84(1–2): 13–20
[58] Bhandarkar M D, Bhat M S, Parker E R,
. Creep and fracture of a Laves-phase strengthened ferritic alloy.
Metallurgical Transactions A , 1976, 7(5): 753–760
[59] Cui J, Kim I-S, Kang C-Y,
. Creep stress effect on the precipitation behavior of Laves-phase in Fe–10%Cr–6%W alloys.
ISIJ International , 2001, 41(4): 368–371
[60] Sawada K, Takeda M, Maruyama K,
. Effect of W on recovery of lath structure during creep of high chromium martensitic steels.
Materials Science and Engineering A , 1999, 267(1): 19–25
[61] Kne?evi? V, Balun J, Sauthoff G,
. Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling.
Materials Science and Engineering A , 2008, 477(1–2): 334–343
[62] Li Q. Precipitation of Fe
2W Laves-phase and modeling of its direct influence on the strength of a 12Cr–2W steel.
Metallurgical and Materials Transactions A , 2006, 37(1): 89–97
[63] Porter D A, Easterling K E.
Phase Transformation in Metals and Alloys .
New York:
Van Nostrand Reinhold, 1981: 326–332
[64] Hofer P, Cerjak H, Warbichler P. Quantitative evaluation of precipitates in the martensitic cast steel G-X12CrMoWVNbN10-1-1. In: Lecomte-Beckers J, Schubert F, Ennis P J, eds.
6th Liège- Conference Materials for Advanced Power Engineering , 1998, Part I, 549–557
[65] Foldyna V, Kubon Z, Filip M,
. Evaluation of structural stability and creep resistance of 9–12% Cr steel.
Steel Research , 1996, 67(9): 375–381
[66] Kubon Z, Foldyna V. The effect of Nb, V, N and Al on creep rupture strength of 9–12% Cr steel.
Steel Research , 1995, 66(9): 389–393
[67] Hattestrand M, Andren H O. Microstructural development during ageing of an 11% chromium steel alloyed with copper.
Materials Science and Engineering A , 2001, 318(1–2): 94–101
[68] Hu P, Yan W, Sha W,
. Study on Laves-phase in an advanced heat-resistant steel.
Frontiers of Materials Science in China , 2009, 3(4): 434–441
[69] Janovec J, Richarz B, Grabke H J. Some aspects of intermetallic phase precipitation in a 12% Cr-steel.
Scripta Metallurgica et Materialia , 1995, 33(2): 295–300
[70] Dimmler G, Weinert P, Kozeschnik E,
. Quantification of the Laves-phase in advanced 9–12% Cr steels using a standard SEM.
Materials Characterization , 2003, 51(5): 341–352
[71] Hattestrand M, Schwind M, Andren H O. Microanalysis of two creep resistant 9–12% chromium steels.
Materials Science and Engineering A , 1998, 250(1): 27–36
[72] Lundin L M. Direct measurement of carbon solubility in the intermetallic (Fe, Cr)
2(Mo, W) Laves-phase using atom-probe field-ion microscopy.
Scripta Materialia , 1996, 34(5): 741–747
[73] Hosoi Y, Wade N, Kunimitsu S,
. Precipitation behavior of Laves-phase and its effect on toughness of 9Cr–2Mo ferritic martensitic steel.
Journal of Nuclear Materials , 1986, 141–143: 461–467
[74] Lee J S, Armaki H G, Maruyama K,
. Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–V–NbSteel.
Materials Science and Engineering A , 2006, 428(1–2): 270–275
[75] Kunimitsu S, You Y, Kasuya N,
. Effect of thermo-mechanical treatment on toughness of 9Cr–W ferritic-martensitic steels during aging.
Journal of Nuclear Materials , 1991, 179–181: 689–692
[76] Schafer L. Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod.
Journal of Nuclear Materials , 2000, 283–287: 707–710
[77] Tamura M, Hayakawa H, Yoshitake A,
. Phase stability of reduced activation ferritic steel: 8%Cr–2%W–0.2%V–0.04%Ta–Fe.
Journal of Nuclear Materials , 1988, 155–157: 620–625
[78] Ishii T, Fukaya K, Nishiyama Y,
. Low cycle fatigue properties of 8Cr–2WVTa ferritic steel at elevated temperatures.
Journal of Nuclear Materials , 1998, 258(263): 1183–1186
[79] Fernandez P, Hernandez-Mayoral M, Lapena J,
. Correlation between microstructure and mechanical properties of reduced activation modified F-82H ferritic martensitic steel Materials.
Materials Science and Technology , 2002, 18(11): 1353–1362
[80] Miyata K, Sawaragi Y, Okada H,
. Microstructural evolution of a 12Cr–2W–Cu–V–Nb steel during three-year service exposure.
ISIJ International , 2000, 40(11): 1156–1163
[81] Tsuchida Y, Okamoto K, Tokunaga Y. Improvement of creep rupture strength of high Cr ferritic steel by addition of W.
ISIJ International , 1995, 35(3): 317–323
[82] Sato M, Hasegawa Y, Muraki T,
. Correlation between creep strength and stability of subgrain structure in high chromium ferritic heat resistant steel with tungsten.
Journal of the Japan Institute of Metals , 2000, 64: 371–374
[83] Muneki S, Igarashi M, Abe F. Creep characteristics of precipitation hardened carbon free martensitic alloys.
Key Engineering Materials , 2000, 171–174: 491–498
[84] Abe F. Creep rates and strengthening mechanisms in tungsten-trengthened 9Cr steels.
Materials Science and Engineering A , 2001, 319–321: 770–773
[85] Danielsen H K, Hald J. Behaviour of Z phase in 9–12%Cr steels.
Energy Materials , 2006, 1(1): 49–57
[86] Jack D H, Jack K H. Structure of Z-phase NbCrN.
Journal of the Iron and Steel Institute , 1972, 210: 790–792
[87] Andren H O, Henjered A, Karlsson L. In:
Stainless Steel 84. London: The Institute of Metals , 1985, 91–96
[88] Hald J, Danielsen H K. Z-phase strengthened martensitic 9–12%Cr steels. In:
Proceedings of 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants, National Institute for Materials Science ,
Tsukuba, Japan, 2009
[89] Danielsen H K, Hald J.A thermodynamic model of the Z-phase Cr(V, Nb)N.
Calphad , 2007, 31(4): 505–514
[90] Danielsen H K, Hald J, Somers M A J. Atomic resolution imaging of precipitate transformation from cubic TaN to tetragonal CrTaN.
Scripta Materialia , 2012, 66(5): 261–264
[91] Danielsen H K, Hald J. On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12%Cr steels.
Materials Science and Engineering A , 2009, 505(1–2): 169–177
[92] Sawada K, Kushima H, Kimura K,
. TTP diagrams of Z phase in 9–12% Cr heat-resistant steels.
ISIJ International , 2007, 47(5): 733–739
[93] Cipolla L, Danielsen H K, Venditti D,
. Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel.
Acta Materialia , 2010, 58(2): 669–679
[94] Hald J. Microstructure and long-term creep properties of 9–12% Cr steels.
International Journal of Pressure Vessels and Piping , 2008, 85(1–2): 30–37
[95] Danielsen H K, Hald J. Tantalum-containing Z-phase in 12%Cr martensitic steels.
Scripta Materialia , 2009, 60(9): 811–813
[96] Golpayegani A, Andrén H O, Danielsen H,
. A study on Z-phase nucleation in martensitic chromium steels.
Materials Science and Engineering A , 2008, 489(1–2): 310–318
[97] Yin F-S, Jung W-S, Chung S-H. Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel.
Scripta Materialia , 2007, 57(6): 469–472
[98] Strang A, Vodarek V. Z phase formation in martensitic 12CrMoVNb steel.
Materials Science and Technology , 1996, 12(7): 552–556
[99] de Castro V, Leguey T, Munoz A,
. Mechanical and microstructural behaviour of Y
2O
3 ODS EUROFER 97.
Journal of Nuclear Materials , 2007, 367–37(Part A): 196–201
[100] Olier P, Bougault A, Alamo A,
. Effects of the forming processes and Y
2O
3 content on ODS-Eurofer mechanical properties.
Journal of Nuclear Materials , 2009, 386–388: 561–563
[101] Klimenkov M, Lindau R, Moslang A. New insights into the structure of ODS particles in the ODS-Eurofer alloy.
Journal of Nuclear Materials , 2009, 386–388: 553–556
[102] Schaeublin R, Leguey T, Spatig P,
. Microstructure and mechanical properties of two ODS ferritic/martensitic steels.
Journal of Nuclear Materials , 2002, 307–311: 778–782
[103] Yu G, Nita N, Baluc N. Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels.
Fusion Engineering and Design , 2005, 75–79: 1037–1041
[104] Liu F, Fors D H R, Golpayegani A,
. Effect of boron on carbide coarsening at 873 K (600°C) in 9–12% chromium steels.
Metallurgical and Materials Transactions A , 2012, 43(11): 4053–4062
[105] Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions.
Nature , 2003, 424(6946): 294–296
[106] Hald J, Straub S. In: Lecomte-Beckers J,
., eds.
Materials for Advanced Power Engineering .
Julich:
Forschungszentrum Julich GmbH, 1998, 155
[107] Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M
23C
6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment.
Metallurgical and Materials Transactions A , 2004, 35(4): 1255–1262
[108] Grobner P J, Bi?s V, Sponseller D L. Delta ferritic heat-resistant chromium-molybdenum steels with improved rupture strength.
Metallurgical and Materials Transactions A , 1980, 11(7): 909–917
[109] Toda Y, Iijima M, Kushima H,
. Effects of Ni and heat treament on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels.
ISIJ International , 2005, 45(11): 1747–1753